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Abstract 
 

The objectives of this study were to assess the genotype (G) by environment (E) interaction of 
grain yield of durum wheat(Triticum durum Desf.) based on parametric models, additive main effects 
and multiplicative interaction (AMMI) and joint linear regression models; and compare the relative 
efficiency of the two models in explaining the GE effects. Twenty-three genotypes were evaluated 
across 12 environments (location-year combinations) in 2003 and 2004. Combined analysis of 
variance showed that the environment (E) accounted for a high percentage of sums of squares 
(remaining after removing the sums of squares due to error and replications). The genotypic 
variability of grain yield among genotypes was small. The best genotype 6 (DBSP02/8) out yielded 
the check by 0.24 ton/ha. Based on full AMMI model analysis, AMMI-1 was found to explain up to 
94% of the main and interaction effects, and AMMI-2 was found to fully capture target percentage 
sums of squares in the GE interaction pattern. The biplot based on the first bilinear AMMI model 
terms indicated that genotype 7 (DBSP02/9) and genotype 19 (DBSP03/16) could be suited for 
cultivation across the test environments.  However, no genotype had superior performance in all 
environments. Reitrivier normal planting date in 2003 (E403) was the most favorable environment for 
yield, whereas, Upington in 2003 (E603) was the least favorable one. Model comparison criteria 
showed that AMMI model was superior to joint regression model in terms of its predictive accuracy 
and efficiency of explaining the pattern of GE sum of squares. It was concluded that AMMI biplot 
clearly facilitate identification of mega-environments and cultivars for specific recommendations. The 
differential response of genotypes observed in this study reaffirms the necessity of multi location 
evaluations to identify superior and stable genotypes. However, trends in specific adaptation could be 
detected using the which-won-where pattern of the AMMI analysis, and site-specific breeding may be 
exploited when feasible. 
 
Keywords: AMMI; Durum wheat; Genotype by environment interaction; Joint regression; Yield. 
 
Introduction 
 

Various statistical models have been developed to quantify GE interactions and identify 
relatively stable genotypes across different locations and years. Parametric model based 
joint linear regression analysis is among the most widely used methods to identify superior 
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cultivars, and include the method proposed by Eberhart and Russell (1966). This method 
employs variance of regression deviations (σ2

di) to measure a cultivar’s stability and the 
linear regression coefficient (βi) to measure a cultivar’s adaptability. Although regression is 
widely applied, the fact that mean of cultivars in each environment is taken as a measure of 
environmental index and is used as an independent variable in the regression may be 
considered as a serious limitation because there cannot be independence among variables, 
particularly, when the number of genotypes is less than 15 (Crossa, 1990). Moreover, the 
variation of the estimates of the regression coefficient is usually so small that classification 
of the genotype for stability and adaptability is difficult (Yue et al., 1997). The additive 
main effects and multiplicative interaction (AMMI) model that combines analysis of 
variance and principal component analyses has been reported to be more effective than the 
conventional two way fixed effects model with interactions because it achieves the 
following: (1) parsimony, because the model contains relatively few degrees of freedom for 
the interactions. (2) effectiveness, because the model contains most of the interactions sum 
of squares (SS) that is rich in pattern leaving residual that is rich in noise with most of the 
degrees of freedom but small SS, thereby affording greater predictive accuracy and 
statistical efficiency (Guach and Zobel, 1997). AMMI model provides a biplot graph useful 
for delineating stable genotypes and mega-environments (homogeneous sub-regions) 
(Guach and Zobel, 1997).  The importance of GE interactions in national cultivar 
evaluation and breeding programs have been demonstrated in almost all major crops, 
including durum wheat (Tesemma et al., 1998; Akcura et al., 2005).  

Durum wheat production in South Africa is relatively small compared to the bread 
wheat. Wheat and local industries depend heavily on import of durum wheat. However, 
with the increasing trend for durum wheat consumptions, identification of the genotypes 
that are specifically adapted to the growing conditions and production practices of durum 
wheat growing regions of South Africa are vital. Therefore, Small Grain Institute (SGI) is 
conducting durum wheat genotypes evaluation across different localities under irrigation. 
These production areas are usually diverse in terms of agro-climatic variables. They are 
believed to represent the major durum wheat production areas of South Africa under 
irrigation. Tremendous variability in terms of adaptation to these localities and stability of 
genotypes has been noted (Solomon et al., 2007). However, there has been little study to 
verify the extent and pattern of environment and GE effects on the yield of durum wheat 
genotypes. Information gained from this assessment should facilitate the design of a testing 
strategy to assist in selecting widely adapted superior genotypes for irrigation areas of 
South Africa. 

The objectives of the present study were therefore to evaluate the GE interactions for 
grain yield of durum wheat genotypes, and to compare the relative efficiency of joint 
regression and AMMI models in describing the pattern of GE effects.  
 
Materials and Methods 
 

Twenty-two elite lines and one local check variety were evaluated across five locations 
representing the major durum wheat growing irrigation areas of South Africa. The 
genotypes used in this experiment represent wide range of phenotypic variation for straw 
strength, height, adaptation, lodging and disease tolerance as well as quality characteristics. 
Kronos (Unknown) is the commercial cultivar currently under production with relatively 
short growth period and high yield potential. DBSP00/1 (unknown) has good yield 
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potential; DBSP00/2(unknown) was selected for its good yield potentials and high gluten. 
Both genotypes were originated from 2000 South Africa durum wheat [elite yield trial. 

DBSP02/6 (PORRON_4 / YUAN_1), DBSP02/7 (SKEST // HUI/TUB / 3 / SILVER), DBSP02/8 
(SN_TURK_MI83-84375 / NIGRIS_5 // TANTLO_1) and DBSP02/9 (STOT//ALTAR_84 /ALD) 
were selected from 32nd International Durum Yield Nursery (32IDUYN) for their high yield 
potentials and good agronomic characteristics. DBSP02/10 (TILO_1/LOTUS_4), DBSP02/11 

(DIPPER_2 / BUSHEN_3) and DBSP02 /13 (SOOTY_9 / 2*TARRO_1) were selected for 
their good yield potentials and strong straw from 31st Durum Yield Trial (31DUYT). 
DBSP02/11 and DBSP02/13 have high gluten. DBSP02/19 (CADO / BOOMER_33) and 
DBSP02/22 (DUKEM_5/MUSK_1//KKV5) were selected from 33rd International Durum 
Yield Nursery (33IDUYN) for their good agronomic characteristics and yield potentials. 
DBSP03/02 (OSSL-1/4/MRBSH /3/RABI //GS / CR/5/KRS/HCN), DBSP03/03 
(QUADALETE//ERP/MAL/3/ UNK/4 /GBCH-2), DBSP03/04 (STJ3//BCR/LKS4) were 
selected from Durum Yield Trial- Mediterranean Areas (DYT-MTA) for their good yield and 
adaptation. DBSP03/10 (GALLI_1 /BOOMER_20),  DBSP03/11 (GREEN_14 // YAV_10 / AUK), 
DBSP03/12 (PLATA_1 / SNM // PLATA_9), DBSP03/16 (RASCON_21 /KNAR_3// PLATA_8),  
DBSP03/17 (RASCON_37 / 2*TARRO_2), DBSP03/18 (SN TURK MI83-84 
375/NIGRIS_5//TANTLO_1), DBSP03/19 (PLATA_1/ SNM // PLATA_9) and DBSP03/20 
(TOPDY_18 / FOCHA_1 // ALTAR 84) were selected from 31nd Durum Yield Trial (32DUYT). 
They were all selected for good yield potential and tolerance to lodging. DBSP03/12, DBSP03/16 
and DBSP03/18 also have high gluten.  
  The 23 genotypes were evaluated across five locations (Figure 1); Loskop 
(Mpumalanga province) represents warm irrigation areas where plants grow relatively 
faster. All the other locations, Upington, Marydale, Prieska and Reit rivier are found in 
Northern Cape province. Except for Upington, all of these locations represent cooler 
irrigation areas where crops require relatively longer growth period to mature. 

The description of the study locations is given in Table 1. In all the test localities 
(Figure 1), yield trials were performed for two years (2003 and 2004, identified by 03 and 
04) in RCBD with three replications. The following location and year combinations were 
defined as environments. Namely, Loskop (E104 and E103), Marydale (E204 and E203), 
Prieska (E304 and E303), Reitrivier normal planting date (E404 and E403), Reit rivier late 
planting date (E504 and E503), and Upington (E604 and E603). Experimental plots were 
5.1m2 with six rows each with 5m long and 0.17m inter row spacing. Plot yield was 
converted to t ha-1 and used for the analyses.  
 
 
Table 1. Characteristics of the testing locations. 
 

  Temperature oC  Coordinate 

Locality Rainfall (mm) aMin. bAve. cMax. Altitude (m.a.s.l) Soil texture Latitude 
(oS) 

Longitude 
(oE) 

Marydale 313 8 14 22 1100 Clay loam 29.2 22.1 
Upington 234 11 20 29 793 Sandy loam 28.5 21.2 
Prieska 178 9 18 25 931 Clay 29.6 22.4 
Reitrivier 361 10 18 25 1121 Sandy 29.1 24.6 
Loskop 307 12 20 29 956 Cay loam 25.2 29.4 
aMin. represents the mean minimum annual temperature, bAve. represents the mean annual temperature and cMax. 
Represents the mean maximum annual temperature. Rainfall is the total annual precipitation. 
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Figure 1. Geographical location of the testing sites in the Republic of South Africa. 

 
Yield of the genotypes was first compared by analysis of variance in each environment 

separately. In the combined analysis of variance, effects of replication and environment 
were considered random, while genotype effect was fixed. The analysis was performed 
according to Hussien et al. (2000) using PROC GLM procedures (SAS, 1999). Biplots were 
produced using SAS GPLOT procedures (Burgueno et al., 2001). 

Numerical stability parameters were estimated using joint linear regression based on 
Eberhart and Russell (1966) model. Heterogeneity of genotype regressions in the joint 
regression analysis was tested on deviations from regressions, and significance of 
deviations from regression was tested on pooled error (residual). Similarity of among test 
environments and genotypes based on main effects and GE interaction effects were 
evaluated using AMMI model (SAS, 1999). Interactive principal components (IPCAs) 
significance in the AMMI analysis (Hussien et al., 2000) was tested by FR test as 
recommended by Piepho (1995). Following the approach by Guach and Zobel (1997), 
relevant portion of GE was computed to avoid spurious interpretation of statistical results. 
Based on this procedure, factoring the errors from uncontrolled variation (“noise”) out of 
the total GE sums of squares is important because most of the noise appears in the 
interaction, since the interaction contains a majority of the treatment df  (Gauch and Zobel, 
1997). Proportion of “noise” sums of squares, “real structure” sums of squares, and target 
relevant variation percentage were calculated as described by Gauch and Zobel (1997).  

Northern Cape 

Mpumalanga 

•Upington 

•Reitrivier

•Prieska
•Marydale 

•Loskop 
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The “noise” sums of squares is estimated by multiplying MS error x df (GE). Factoring the 
“noise” sums of squares out of the GE sums of squares gives “real structure” sums of 
squares [SS GE-SS noise]. Thus, the total relevant variation within the total treatment sums 
of squares [SS (Genotype)+ SS (GE)] is calculated by the addition of SS (genotype) + SS 
(“real structure”). Hence, the target percentage of the relevant variation explained by IPCA 
in the AMMI analysis should be equal to the ratio of (SS relevant / SS treatment). Variance 
component of genotype×environment interaction (σ2

ge) in joint linear regression and AMMI 
models were estimated as described by Annicchiarico (2002). F-test was used to test 
whether the variances were significantly different from zero or not according to 
Annicchiarico (2002). Ratios of % GE interaction sum of squares and % GE degree of 
freedom were computed for model parameters according to Brancourt-Humel et al. (1997). 
In Both AMMI and joint regression models, computations were carried out based on the GE 
and its components sum of squares and degree of freedoms. Association between stability 
parameters, AMMI principal components and yield were estimated based on simple 
correlation analysis.  
 
Results and discussion 
 

Significant genotypic and environmental effects on the grain yield variability were 
evident both from the joint linear regression and AMMI models analyses. The environment 
(E) accounted for a high percentage of sums of squares (89.6%) remaining after removing 
the sums of squares due to error and replications. The genotype (G) and the GE interactions 
accounted for relatively smaller proportions, 2.1 and 8.2%, respectively (Table 2). In multi-
environmental trial (MET), environment explains 80% or higher of the total yield variation 
(Yan, 2002). More pronounced influence of environment on the grain yield compared to the 
genotype or the GE interaction effects has been documented in many crops, wheat 
(Tesemma et al., 1998; Kaya et al., 2003; Akcura et al., 2005). This is particularly true 
when the trials are composed of more uniform elite materials (Guach and Zobel, 1997). The 
effect of GE interaction was highly significant (P<0.01) (Table 2). This interaction showed 
that the genotypes responded differently relative to each other to the changing environment. 
Analysis of genotype by environment interaction is vital for breeders in order to design the 
dissemination strategies for new varieties. It is important to identify cultivars with specific 
and general adaptation. Precise recommendation of lines for general and specific adaptation 
requires clear understanding of the real pattern of genotype by environment interaction. 
Thus, GE sum of squares was partitioned into “noise” and “real structure” following the 
procedure by Gauch and Zobel (1997). This computation ignores irrelevant environmental 
effects and much interaction noise while focusing mainly on the relevant genotype and real 
interaction effects (Gauch and Zobel, 1997; Campbell and Jones, 2005). GE interaction 
contained 48.9% noise and 51.09% real structure, with the relevant (target) variation being 
6.3% of the treatment sums of squares. Analysis based on AMMI full model showed that 
the first five principal components were significant (Table 2).  

The genotype main effect and the first two IPCAs of the GE interaction components 
accounted for 6.2% of the treatment sums of squares. This was almost equal to the target 
percentage of the treatment sums of squares explained (6.3%). Hence, the two IPCAs 
represented the practical level variation that can be exploited. Thus, biplot was constructed 
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Table 2. Partitioning of the sum of squares (SS) and mean squares (MS) from the AMMI analysis of 23 durum 
wheat genotypes yield performance evaluated across 12 environments. 
   

a Numbers in brackets are percentage of GE explained by interactive principal components (IPCA). DF=degree of 
freedom. 
* and ** are significant at P<0.05 and 0.01, respectively. 

 
based on AMMI2 (IPCA1 and IPCA2) scores to display which-won-where patterns of the 
genotypes (Figure 2A). Visualization of the which–won–where pattern of multiple 
environmental trials (MET) data is important for further partitioning of a region into mega-
environments (Gauch and Zobel, 1997; Yan et al., 2000; 2001). The polygon view of a 
genotype and GE interaction biplot explicitly displays the which-won-where pattern, and 
hence is a concise summary of the GE pattern of a MET data set (Yan, 2002) (Figure 2A). 
The polygon in the figure is formed by connecting the markers of the genotypes that are 
further away from the biplot origin such that all other genotypes are contained in the 
polygon. In this study, a polygon with four sides was formed. The rays that are 
perpendicular to the sides of the polygon or their extension were identified in capital letters, 
A, B, C and D. These rays partitioned the biplot into four sections (Figure 2A). In the GE 
biplot, the vertex genotype for each section had the highest yield in all environments that 
fell in the sector (Yan et al., 2000; Yan, 2002). For example, five environments; E404, 
E303, E204, E504 and E304 fell into the sector delineated by ray-A and B.   

These environments represent cooler irrigation areas, and showed similar interaction 
effects with the genotypes that fell in the section, suggesting they may represent a mega-
environment. The vertex genotype for this section was 1 (check variety), suggesting it was  

Source DF SSa MS % Treatment SS 

Treatment 275 4610.787 16.766**  
Environments (E) 11 4133.196 375.745** 89.64 
Reps within E 24 92.438 3.8520  
Genotype (G) 22 98.107 4.459** 2.13 
G × E 242 379.484 1.568** 8.23 
IPCA 1 32 103.17(27.19) 3.224** 2.24 
IPCA 2 30 84.263(22.2) 2.809** 1.83 
IPCA 3 28 61.95(16.32) 2.212** 1.34 
IPCA 4 26 39.959(10.53) 1.537** 0.87 
IPCA 5 24 29.279(7.72) 1.22* 0.64 
IPCA 6 22 18.798(4.95) 0.8540 0.41 
IPCA 7 20 15.635(4.12) 0.7820 0.34 
IPCA 8 18 11.557(3.05) 0.6420 0.25 
IPCA 9 16 8.596(2.27) 0.5370 0.19 
IPCA10 14 3.782(1.00) 0.2700 0.08 
IPCA11 12 2.496(0.66) 0.2080 0.05 
Residual 528 404.847 0.7670  

Total 827 5108.072   
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Figure 2. AMMI biplot for (A) the first two IPCAs to show the which-won-where pattern and (B) IPCA1 vs mean 
yield, to show genotype performance in relation to stability of 23 durum wheat genotypes evaluated across 12 
environments. Number in the plots represents genotypes (See Table 2 for names). Environment is designated as 
“E”, and location is represented in number (1-6) followed by 03 or 04 to indicate year. 
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the best yielding genotype in all of these environments. Similarly, E604 and E104 fell in the 
sector demarcated by ray B and C. These two environments represent warmer irrigation 
areas, and hence possibly similar agro ecology. However, classification of the environments 
was not consistent over the years, thus defining them, as mega-environment would be 
inconclusive. The winner genotype in this sector was genotype 7. In the sector delineated 
by ray C and D, E103 and E403 were identified. The vertex genotype in this section was 
genotype 11 that gave the highest yield in E103 and E403. Ray D and A identified a section 
that contained three environments; E203, E603 and E503. In terms of geographical 
proximity, these environments are closely located. However, E203 and E503 represent 
cooler irrigation areas while E603 represents warm irrigation areas. Moreover, the grouping 
of these environments appears to be due year or planting date effects rather than 
homogeneity of the environments. The vertex genotype in this sector was genotype 6, 
suggesting it was the winner in these environments. The vertex genotype performance in 
each sector in Figure 2A corresponds to the maximum yield in each test environment 
(Table 3). Table 3 shows that the genetic variability for yield in this study was small. 
Across environments, only genotype 6 (DBSP 02/8) gave the best yield, surpassing the 
check (genotype 1) by 0.24 ton/ha. However, no genotype showed consistent performance 
across all environments (Table 3). This suggests, in the final stage of elite lines evaluation, 
emphasis is shifted to the evaluation of adaptation rather than yield per se selection.  

To visualize the genotypes performance in relation to stability, mean performance was 
plotted against IPCA1 (Figure 2B). The biplot based on AMMI-1 model captures the 
genotype SS of 98.107 and the environment SS of (4133.196), and the IPCA1 captures 
103.17 of the interaction SS of 379.484. Thus, it is very informative since it explains 94 % 
of the treatment SS. Genotypes located near the biplot origin was less responsive than the 
vertex genotypes (Yan, 2002). Genotype 7, 13, 16, 17 and 19 were located near to the 
center of the origin, suggesting they had the maximum stability. Genotype 7 and 19 had 
mean performance higher than the average throughout the test environments suggesting 
they had a very good general adaptation. Genotype 8, 4 and 14 were the least stable 
genotypes and also with very poor yield performance (Figure 2B and Table 3). However, 
genotype 14 could be specifically adapted to environment, E404 (Figure 2B). The 
genotypes with higher yield were genotypes 1, 6, 21 and 23 (Table 3). However, the 
genotype 1 was unstable due to high absolute IPCA1 scores, along the ordinate (Figure 2B).  
Genotypes 9, 11 and 12 had mean yield close to the average (Table 3). However, these 
genotypes had high absolute IPCA1 scores (Figure 2B) suggesting they had poor general 
adaptation. They had, however, good specific adaptations to E103 and E104 (Table 3). The 
most discriminating environments were indicated by the longest distance from the origin 
(E403, E603, E504, and E303) (Figure 2B). Year differences were very high for some 
localities, such as, Reitrivier normal planting date (E403 and E404) and Upington (E603 
and E604) (Figure 2B). This underlines the importance of evaluating multi-location yield 
trials over different seasons. Mean genotype performance across environments was 
correlated neither to IPCA1 (r=0.18; P>0.05) nor to IPCA2 (r=–0.05; P>0.05). However, 
environment mean performance was correlated significantly to both IPCA1 and IPCA2    
(r= –0.61; P<0.05). 
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Table 3. Mean grain yield (t ha-1) of 23 durum wheat genotypes in 12 environments (combination of year and 
location). 
 
Genotype Code E104 E204 E304 E404 E504 E604 E103 E203 E303 E403 E503 E603 Mean 
KRONOS 1 7.6 †9.7 9.5 8.1 6.2 8.8 8.6 9.0 5.9 9.6 9.6 3.8 8.03 
DBSP00/1 2 7.9 8.3 6.8 6.9 4.1 8.7 9.6 9.4 4.4 11.7 9.2 3.8 7.57 
DBSP00/2 3 8.1 9.3 9.2 7.7 5.7 8.9 9.1 9.0 5.4 10.4 8.8 3.7 7.94 
DBSP02/6 4 7.6 7.8 6.3 6.3 3.6 8.2 9.2 8.9 3.8 11.4 8.5 3.4 7.08 
DBSP02/7 5 8.0 8.1 7.5 6.5 4.2 8.4 9.2 8.5 4.0 11.1 7.5 3.1 7.18 
DBSP02/8 6 8.4 8.9 7.1 7.6 4.7 9.3 10.2 10.3 5.1 12.5 10.5 4.7 8.28 
DBSP02/9 7 9.6 9.1 9.5 7.2 5.4 9.4 10.1 8.8 4.7 11.8 6.6 3.6 7.98 
DBSP02/10 8 8.2 7.8 7.0 6.1 3.7 8.4 9.4 8.5 3.6 11.6 7.1 3.0 7.03 
DBSP02/11 9 8.8 8.5 7.4 6.9 4.3 9.1 10.1 9.4 4.4 12.4 8.4 3.9 7.80 
DBSP02/13 10 8.8 8.4 7.7 6.8 4.4 9.0 10.0 9.1 4.3 12.1 7.8 3.7 7.68 
DBSP02/19 11 9.0 8.4 7.3 6.8 4.2 9.2 10.3 9.4 4.2 12.7 8.1 3.9 7.79 
DBSP02/22 12 8.9 8.6 7.5 7.0 4.5 9.2 10.2 9.5 4.5 12.4 8.5 4.0 7.90 
DBSP03/02 13 8.3 8.4 7.8 6.8 4.5 8.7 9.4 8.8 4.3 11.3 7.8 3.4 7.46 
DBSP03/03 14 7.5 8.2 7.5 6.7 4.4 8.2 8.8 8.6 4.3 10.5 8.2 3.2 7.18 
DBSP03/04 15 7.9 9.0 8.0 7.6 5.1 8.9 9.4 9.5 5.2 11.1 9.7 4.0 7.95 
DBSP03/10 16 8.9 8.7 8.6 6.9 4.9 9.0 9.8 8.8 4.5 11.6 7.2 3.5 7.70 
DBSP03/11 17 8.9 8.6 8.8 6.7 4.9 8.8 9.5 8.4 4.3 11.2 6.5 3.1 7.48 
DBSP03/12 18 8.7 8.7 7.8 7.2 4.7 9.1 10.0 9.5 4.7 12.0 8.7 4.0 7.93 
DBSP03/16 19 8.8 8.9 8.5 7.2 5.0 9.2 9.9 9.2 4.8 11.7 8.1 3.8 7.93 
DBSP03/17 20 8.2 8.1 7.4 6.5 4.1 8.5 9.4 8.6 4.0 11.3 7.5 3.2 7.23 
DBSP03/18 21 9.0 8.9 8.2 7.2 4.9 9.3 10.1 9.4 4.7 12.1 8.2 4.0 8.00 
DBSP03/19 22 7.9 8.6 7.7 7.0 4.6 8.6 9.2 9.0 4.6 11.0 8.7 3.6 7.54 
DBSP03/20 23 9.2 8.8 8.1 7.1 4.8 9.4 10.3 9.5 4.6 12.5 8.0 4.0 8.03 
Mean  8.4 8.6 7.9 7.0 4.6 8.9 9.6 9.1 4.5 11.6 8.2 3.7 7.68 
Max†  9.6 9.7 9.5 8.1 6.2 9.4 10.3 10.3 5.9 12.7 10.5 4.7  
 
 † Underlined values are the maximum yield at each test environment. 
 
 

Partitioning the GE interaction into linear (GE linear) and non-linear (deviation from 
regression) in the joint regression analysis (Table 4) showed that both components were 
significant (P<0.01). A larger proportion of GE sums of squares (86%) were accounted for 
by the deviation from regression. Only small portions of GE sums of squares (14%) were 
accounted for by heterogeneity of regressions (Table 4). This was small compared to some 
studies, for example Ortiz et al. (2001) reported heterogeneity of regressions to account for 
23%. However, for consideration of regression coefficient as stability parameter, 
heterogeneity of regression should explain more than 35% (Annicchiarico, 1997; 
Annicchiarico et al., 2006). This suggested that the joint regression analysis offered an 
incomplete explanation of the GE interaction for grain yield in this study. Nevertheless, a 
significant heterogeneity of regressions (genotype × environment linear comparison) 
indicated that the stability parameter, β, estimated by a linear response to a change in 
environment was not consistent among genotypes. The significance of the mean squares 
due to pooled deviations from regressions showed that the performance of some genotypes 
were not stable over environments. This highlighted the need to assess response of 
genotype to environmental changes using both a linear regression coefficient, (β) and 
deviations from the regression (δdi). According to Eberhart and Russell (1966), genotypes 
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are grouped according to the size of their regression coefficients, less than, equal to, or 
greater than one, and according to the size of the deviation from the regression (equal to or 
different from zero). Genotypes with regression coefficient greater than one would be more 
adapted to favorable environments, and those with regression coefficients less than one 
would be adapted to unfavorable growth conditions, and those with regression coefficients 
equal to one would have an average adaptation to all environments. Genotypes with 
deviations from regression equal to zero would have highly predictive behavior, where as 
with regression deviations greater than zero, they would have low predictability.  

Genotype 1 (check variety) had a high mean yield and a regression coefficient, which 
was significantly lower than one (Table 5), thus characterizing it as genotype probably 
adapted to unfavorable environmental conditions. However, deviation significantly 
different from zero coupled to the lowest coefficient of determination (R2=72%) (Table 5), 
indicate that this genotype could be less predictable. However, genotypes, 9, 11, 12, 18, 19, 
21 and 23 showed yield performances above average, regression coefficients close to unity, 
and deviation not significantly different from zero. These genotypes had also high 
coefficients of determination (Table 5). Therefore, they had an average capacity for 
adaptation to all the environments and were highly predictable. These kinds of genotypes 
could be considered ideal cultivars, since they maintained good performance in 
environments with low yield (Eberhart and Russell, 1966). The yield performance of 
genotypes 4, 5, 8, 14 and 20 were below the average (Table 5). Theses genotypes had 
regression coefficients equal to one. Thus, these genotypes could be stable, but with less 
response to environmental changes. The high coefficients of determination and deviations 
variance close to zero for these genotypes imply that these genotypes had relatively good 
predictability (Table 5). Finlay and Wilkinson (1963), Perkins and Jinks (1968) reported 
that linear response of a genotype is associated with mean performance. In our study 
however, neither the regression coefficient (r=0.20) nor the deviations mean square 
(r=0.29) was associated to mean yield performance (P>0.05). This agrees with the findings 
of similar studies in sorghum (Haussmann et al., 2000). Eberhart and Russell (1966) also 
emphasized that both the regression coefficients and the deviations need to be considered in 
assessing stability and their responses were independent from each other. 
 
 
Table 4. Partitioning of GE into linear and nonlinear component from joint linear regression analysis of 23 durum 
wheat genotypes yield performance evaluated across 12 environments.  
 

aNumber in brackets are percentage of GE explained by linear regression and deviations from regression. 
DF=degree of freedom, SS=sum of squares, MS=mean squares. 
* and ** are significant at P<0.05 and 0.01, respectively. 

Source DF SSa MS 

Genotype (G) 22 32.702 1.486** 
Environment (E)+GE 253 1504.227 5.946** 
E(linear) 1 1377.732 1377.732** 
GE (Linear) 22 17.888(14.25) 0.813* 
Pooled deviation from Regression 230 108.606(85.75) 0.472** 
Residual 552 165.762 0.300 
Total 827 1536.929  
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Table 5. Mean yield across environments and stability parameters of Eberhart and Russell (1966) model for 23 
durum wheat genotypes evaluated across 12 environments. 
 
  Yield Stability parameter 
Name Code t ha-1 β δdi R2 (%) 
KRONOS 1 8.03 0.65** 0.71** 72 
DBSP00/1 2 7.56 1.03 0.45** 90 
DBSP00/2 3 7.95 0.83 0.38* 86 
DBSP02/6 4 7.09 1 0.19 92 
DBSP02/7 5 7.19 0.94 -0.06 96 
DBSP02/8 6 8.27 1.13 0.59** 89 
DBSP02/9 7 7.97 1.06 0.48** 90 
DBSP02/10 8 7.01 1 0.31 91 
DBSP02/11 9 7.79 1.16 0.13 95 
DBSP02/13 10 7.66 0.99 0.26* 91 
DBSP02/19 11 7.79 1.08 0.19 93 
DBSP02/22 12 7.91 1.1 -0.17 98 
DBSP03/02 13 7.48 0.93 -0.07 96 
DBSP03/03 14 7.17 0.86 -0.18 97 
DBSP03/04 15 7.95 0.96 0.27* 91 
DBSP03/10 16 7.71 1.11 0.09 95 
DBSP03/11 17 7.48 0.99 0.34* 90 
DBSP03/12 18 7.91 1.1 0.06 95 
DBSP03/16 19 7.92 0.99 -0.04 96 
DBSP03/17 20 7.24 1 0.16 93 
DBSP03/18 21 7.99 1.04 0.00 96 
DBSP03/19 22 7.53 0.91 -0.11 96 
DBSP03/20 23 8.03 1.17 -0.03 97 
 Mean 7.68 1.00   
 Stderr 0.073 0.088   
β = linear regression coefficient. δdi= deviation from regression 
* and ** are significant at P<0.05 and 0.01, respectively. 
 
In order to compare the efficiency of the two models, model comparison criteria were 
computed (Table 6). The amount of GE variation explained by heterogeneity of regression 
in the joint linear regression analysis model (R2=14%) was lower than that of the variation 
explained in both IPCA 1 and 2 of AMMI model (R2=27 and 22 %, respectively). The 
AMMI2 (IPCA1 and IPCA2) explained (R2=49%), which was more than three time higher 
than the amount explained due to heterogeneity of regression in the joint linear regression 
analysis model. The estimated variance components of the GE interaction (σ2ge) were 
significantly (P<0.01) different from zero in all cases (Table 6). However, the relative size 
of variance represented in the GE interaction by AMMI model was larger than the joint 
linear regression model.  IPCA1 had GE variance that was almost five times bigger than the 
heterogeneity of regression. AMMI2 represented almost nine times larger variance 
compared to the heterogeneity of regression in the joint analysis model. Annicchiarico, et 
al. (2006) pointed out that mean squares and degree of freedom are related to the predictive 
ability of the model. This is because they take into account accuracy (i.e., the amount of GE 
interaction sum of squares), and parsimony (i.e., the amount of degree of freedom) of the 
model. Examining the ratio of % GE SS to % GE DF revealed further evidence to the  
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Table 6. Model comparison criteria computed from joint regression and AMMI models parameters for 23 durum 
wheat genotypes evaluated across 12 environments. 
 
Parameter R2 (%) σ2

ge %GE SS/%GE DF 
Joint Regression    
Heterogeneity 14.25 0.128** 1.63 
Deviation 85.75 0.043** 0.93 
AMMI    
IPCA1 27.19 0.614** 2.06 
IPCA2 22.20 0.510** 14.16 
AMMI2 49.39 1.124** 7.91 
σ2

ge = variance of GE. ** indicates that the value is significantly (P<0.01) different from zero 
 
superiority of the AMMI model in terms of its predictive ability. Based on this criterion, 
IPCA1 showed a ratio higher than of the heterogeneity of regression (Table 6). AMMI2 
showed a ratio, which was almost five times larger than the heterogeneity of the regression 
in the joint regression analysis model. The superiority of AMMI model over joint 
regression model has already been reported in various crops (Annicchiarico, 1997; 
Brancourt-Hulmel et al., 1997; Annicchiarico, 2002; Annicchiarico and Piano, 2005; 
Annicchiarico et al., 2006). 
 
Conclusions 
 

The joint regression analysis based on Eberhart and Russell (1966) model provided an 
incomplete explanation to the GE interaction patterns. Comparison of the joint regression 
model with AMMI based on the different efficiency measurement criteria confirmed that 
AMMI model was superior to the joint regression model. Moreover, AMMI provided 
adequate explanation to the relevant pattern of variation in the treatment sum of squares and 
GE interactions. Detailed information was generated based on AMMI biplot analysis. The 
extent of variability among genotypes in relation to their target environment was evident. 
The biplot showed how a particular genotype that fell in a particular sector attained the 
observed performances. Moreover, clear stratification of environments was evident, which 
could possibly represent mega- environments. The association between the regression 
coefficient and the IPCA1 was strong (r= -0.88; P< 0.01). Moreover, neither the Eberhart 
and Russell (1966) stability parameters nor the IPCAs were related to mean yield 
performance. However, for practical cultivars recommendation purposes AMMI based 
analysis of genotype by environment interactions assessments should be powerful tool 
because it can easily discern which-won-where pattern. Moreover, in national variety trials 
where a number of diverse localities are included identification of environments with 
similar patterns (mega-environments) would be possible. 
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