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Abstract 
 

Evaluating agricultural land management practices requires knowledge of soil spatial variability 
and understanding their relationships. Spatial distributions for fourteen soil physical and chemical 
properties were examined in a wheat field in Sorkhankalateh district, in Golestan province, Iran. 101 
soil samples at the distances of 5m, 10m and 20m as nested grid were collected at the depth of 0-
30cm in early December 2004 just after planting the winter wheat in a plot (1.8 ha area). Data were 
analyzed both statistically and geostatistically on the basis of the semivariogram. Frequency 
distribution of all data was normal. The spatial distribution and spatial dependence level varied within 
location. The range of spatial dependence was found to vary within soil parameters. Nitrate had the 
shortest range of spatial dependence (23.99m) and K had the longest (93.92m). Eight parameters 
including pH, EC, sand, silt, clay, P, CaCO3 and organic matter (OM) were moderately spatially 
dependent whereas saturation percentage (SP), bulk density (Db), K, N, cation exchange capacity 
(CEC) and exchangeable sodium percentage (ESP) were strongly spatially dependent. The results 
demonstrate that within the same field, spatial patterns may vary among several soil parameters. Soil 
nutrients were found to be affected by farmer management. Variography and kriging can be useful 
tools for designing effective soil sampling strategies and variable rate application of inputs for use in 
site-specific management. 
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Introduction 
 

An understanding of the distributions of soil properties at the field scale is important for 
refining agricultural management practices and assessing the effects of agriculture on 
environmental quality (Cambardella et al., 1994). Spatial variability in soils occurs 
naturally from pedogenic factors. Natural variability of soil results from complex 
interactions between geology, topography, climate as well as soil use (Jenny, 1980; Quine 
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and Zahng, 2002). In addition, variability can occur as a result of land use and management 
strategies. As a consequence, Soils can exhibit marked spatial variability at the macro– and 
micro –scale (Vieira and Paz-Gonzalez, 2003; Brejda et al., 2000). 

Demands for more accurate information on spatial distribution of soils have increased 
with the inclusion of the spatial dependence and scale in ecological models and 
environmental management systems. This is because the variation at some scales may be 
much greater than at others (Yemefack et al., 2005). The need for intensive grid sampling 
for evaluating of the spatial variability and/or the diversity of different soil and agronomic 
properties has been frequently emphasized (Paz-Gonzalez et al., 2000; Cattle et al., 1994). 
However, most soils studies use bulk sampling from the area analyzed or treated, e.g. the 
agricultural field. The soil variability therefore is ignored by such sampling. This leads to 
the question: if this variability could be mapped, how much economic benefit could there 
be in treating small area of the field differently (Yemefack et al., 2005). This is the 
motivation for the recent interest in precision agriculture, which has resulted in much work 
on within-field variability, mostly in context of high-technology farming but also in 
shifting cultivation (Godwin and Miller, 2003).  

The variability of soil properties within fields is often described by classical statistical 
methods, which assume that variation is randomly distributed within mapping units. In 
addition, soil properties frequently exhibit spatial dependency. Generally, samples collected 
close to one another are more similar than samples collected at greater distances. Therefore, 
parametric statistics are inadequate for analysis of spatially dependent variables because 
they assume that measured observations are independent in spite of their distribution in 
space (Miller et al., 1988). 

Geostatistical analyses, originally used in the mining industry have proven to be useful 
to soil science for characterizing and mapping spatial variation of soil properties (Materon, 
1963). Many investigations have been conducted that show the spatial distribution of soil 
properties throughout a region (Burgess and Webster, 1980; Warrick et al., 1986; Odeh et 
al., 1992; Juang and Lee, 2000). Geostatistics consists of variography and kriging. 
Variography uses semivariograms to characterize and model the spatial variance of data 
whereas kriging uses the modeled variance to estimate values between samples (Burgess 
and Webster, 1980; Yamagishi et al., 2003). There is a little information in Iran that 
presents a description of spatial variability of soil parameters in the field-scale. The 
objective of this study was to describe the variability of some physical and chemical soil 
properties at field scale in Sorkhankalateh, Golestan province, Iran. 
 
Materials and methods 
 
Study area, sampling design and laboratory analysis 
 

The study was conducted on a farmer–operated wheat field at the Sorkhankalateh, about 
25 km northeast of Gorgan, in Golestan province, Iran (Figure 1). According to the USDA 
Soil Taxonomy (Soil Survey Staff, 2006), the soil at the study region was classified as fine, 
mixed, thermic, Fluventic Haploxerepts. Samples of the 0-30 cm horizon were collected 
before planting in early December 2004 to compare the spatial variation of  soil properties 
at  a scale of 1.80 ha (100 × 180m plot) using augers  on distances of  20 m, 10 m and  5 m 
as a  nested  grid (n=101) (Figure 2). The soil samples were taken to the laboratory and air–
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dried over night and passed through a 2-mm sieve. Particle size analysis was performed 
using Hydrometer method (Day, 1965); organic matter content was determined using 
Walkley–Black, 1934; pH was measured in a 0.01 mol KCl–solution; available 
phosphorous was measured by colorimetry using ascorbic acid-ammonium molybdate 
reagents (Olsen, 1982); available potassium was measured using extraction with 
ammonium acetate (1N) (Richards, 1954); total Nitrogen using Kjeldal (Bremner and 
Mulvaney, 1982); cation exchange capacity and exchangeable sodium were determined 
using extraction with sodium acetate (Page et al., 1987); Electrical conductivity was 
measured with Electroconductimeter, Alkaline-earth Carbonate (lime) was measured by 
acid neutralization (Salinity Laboratory Staff, 1954); bulk density was determined by 
Method of soil Analysis (1986). 

 

 
Figure 1. Location of the study area. 

 

 
Figure 2. Sampling pattern in 1.8 ha area (100×180m plot). 
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Statistical analysis  
 
Exploratory statistical analysis 
 

Data were analyzed statistically. Classical descriptors such as mean, median, minimum, 
maximum, coefficient of variation (%CV), standard deviation (SD), skewness and kurtosis 
of data distribution were determined using the Statistical Analysis System (SAS institute, 
1985). Also normality of the data was examined by Kolmogoroph-Smironoph test (SAS, 
1985). 

 
Geostatistical   analysis  
 
The soil properties were analyzed using geostatistics. An isotropic semivariogram was 
calculated for each soil property using VARIOWIN software (Pannatier, 1996). 
Semivariance is defined by the following equation (Cahn et al., 1994; Lopez-Granadoz et 
al., 2002):  
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where  γ(h) is  the  experimental  semivariogram  value at distance interval h; N(h) is 
number of sample  value  pairs within the distance interval h; and z (xi+h) is sample value 
at  two points separated by the distance interval h. All pairs of points separated by distance 
h (lag h) were used to calculate the experimental semivariogram. Several semivariogram 
functions were evaluated to choose the best fit with the data. Spherical or Gaussian models 
were fitted to the empirical semivariograms. Spherical model that is the most commonly 
used model in soil science (Burgess and Webster, 1980) is defined in the following 
equations:  

     γ(h) = C0 + C1 [3h/2a – ½(h/a)2 ], h≤a               (2) 
     γ(h) = C0 + C1

 , h>a                                                                    

 
Gaussian model is described with the following equation (Cetin and Kirda, 2003):  
 

γ(h) = C0 + C1 (1- e-3(h/a)2)                                (3)  
 

Where C0 is the nugget effect, C1 is the structural variance and is the range of spatial 
dependence.  

The parameters of the model e.g. nugget semivariance, range and sill were also 
determined. Nugget semivariance is the variance at zero distance; sill is the lag distance 
between measurements at which one value for a variable does not influence neighboring 
values; and range is the distance at which values of one variable become spatially 
independent of another (Lopez Granadoz et al., 2002). Different classes of spatial 
dependence for the soil variables were evaluated by the ratio between the nugget 
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semivariance and the total semivariance (Cambardella et al., 1994). For the ratio lower than 
25%, the variable was considered to be strongly spatially dependent, or strongly distributed 
in patches; For the ratio between 26 and 75%, the soil variable was considered to be 
moderately spatially dependent, For the ratio greater than 75%, the soil variable was 
considered weakly spatially dependent; and for the ratio of 100%, or if the slope of the 
semivariogram was close to zero, the soil variable was considered non-spatially correlated 
(pure nugget). 

Then Semivariogram models were cross- validated (trial and–error procedure) to check 
the validity of the models and to compare values estimated from the semivariogram model 
with actual values (Utset et al., 2000). Difference between estimated and experimental 
values are summarized  using  the  following  cross- validation  statistics: mean error (ME) 
and  mean  square  error (MSE) as follows: 
  ME=Σn

i=1(Z* - Z)/n                                (5) 
  MSE=Σn

i=1(Z* - Z)2/n                            (6) 
Where Z*  are the prediction values , Z are the mean values and n is the  total   number of  
prediction  for each validation case. The ME gives the bias and the MSE gives the 
prediction accuracy respectively (Utset et al., 2000). Once cross–validated, the parameters 
of the semivariogram models described above were used in the construction of maps by 
kriging for each soil property. Ordinary  block kriging was  performed  on a  regular grid of  
5 m  using GEOEAS software (Englund, 1980) and contour maps were generated using  
SURFER8 (Golden software, 2002).  
 
Results and discussion 
 

The summary of the statistics of soil parameters are shown in Table 1. The descriptive 
statistics of soil data suggested that they were all normally distributed (according to 
Kolmogrov-Smironov test). Skewness values (Table 1) also confirmed that all soil 
variables were normally distributed. Therefore no transformation was used for 
geostatistical analyses. Coefficient of variation for all of variables was low; the highest and 
lowest CV% was related to ESP (12.36%) and pH (0.59%) respectively. Generally, CV 
values for selected soil properties in this study were lower than those reported in other 
references, indicating probably to the homogenizing effect of the long-term cultivation and 
homogenous management on top soil. This finding is also in accordance with Paz Gonzalez 
et al. (2000).  

Classical statistics could not show the spatial variability of soil parameters. The spatial 
behavior of soil attributes was evaluated through their semivariograms along with the 
models fit to them, as shown in Figure 3 and the parameters for the models corresponding 
to the semivariograms are presented in Table 2. The geostatistical analysis presented 
different spatial distribution models and spatial dependence levels for the soil properties. 
As seen, the ranges of spatial dependences show a large variation (from 23.99 m for total N 
up to 93.92 m for K). Knowledge of the range of influence for various soil properties 
allows one to construct independent datasets to perform classical statistical 
analysis.Furthermore, it aids in determining where to resample if necessary, and in the 
design of future field experiments to avoid spatial dependency. 
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The range values showed considerable variability among the parameters (Table 2). 
There were great differences between ranges of the different soil variables, as had been 
already reported in several studies. Weitz et al. (1993) found most of the soil properties had 
variable range between 30 and 100 m. Doberman (1994) fitted the spherical models to 
variograms with range between 80 to 140 m. Cambardella et al., (1994) reported it was 80 
m for total organic N at a farm from Iowa, USA. 

 
Table1. Descriptive statistics for variables within the field grid (100×180 m) to a depth of 0.3 m. 
 

Variable Unit Mean Median Min Max CV(%) SD Skewness Kurtosis 
pH -log[H+] 7.86 7.86 7.75 7.96 0.59 0.047 -0.106 -0.502 
EC dSm-1 0.83 0.84 0.64 1.05 11.20 0.093 0.322 -0.033 
SP (%) 68.58 68.41 67.17 70.02 1.04 0.712 0.031 -0.875 
sand (%) 2.17 2.17 1.90 2.36 4.01 0.087 -0.600 1.179 
VC-sand (%) 0.17 0.17 0.13 0.22 12.35 0.021 -0.009 -0.814 
C-sand (%) 0.29 0.29 0.20 0.35 11.03 0.032 -0.341 -0.67 
M-sand (%) 0.39 0.40 0.30 0.45 8.72 0.034 -0.635 -.118 
F-sand (%) 0.61 0.61 0.40 0.72 8.69 0.053 -0.791 1.570 
VF-sand (%) 0.70 0.70 0.60 0.81 5.42 0.038 -0.060 0.110 
Silt (%) 41.51 41.76 38.32 44.66 2.76 1.147 -.525 0.402 
Clay (%) 56.32 56.08 53.18 59.50 2.02 1.140 0.477 0.308 
Db g cm-3 1.80 1.81 1.65 1.85 2.33 0.042 -0.701 1.990 
P mg kg-1 27.16 27.40 24.00 29.50 4.68 1.271 -0.385 -.761 
K mg kg-1 334.59 335.26 321.11 352.56 2.43 8.127 0.230 -0.578 
CaCO3 (%) 27.10 27.00 22.00 31.00 7.34 1.989 -0.119 -0.516 
OM (%) 2.57 2.58 1.82 3.00 8.52 0.219 -0.416 0.107 
N (%) 0.13 0.13 0.091 0.178 8.46 0.011 0.379 4.011 

CEC Cmol(+) 
Kg-1 31.06 31.10 28.75 32.65 2.55 0.793 -0.519 0.421 

ESP (%) 5.88 5.90 4.69 7.80 10.39 0.611 0.592 1.072 

 
Table 2. Parameters for variogram models for different soil properties. 
 

Variable Unit Model Nugget Sill Range Spatial 
Ratio(%) 

Spatial 
class ME MSE 

pH -log[H+] Spherical 0.0011 0.001 24.39 53.84 M 0.00096 0.0022 
EC dSm-1 Gaussian 0.0048 0.0043 57.23 53.05 M -0.00146 0.0063 
SP (%) Gaussian 0.89 8.9 55.09 9.09 S 0.0036 0.443 
TotalSan
d (%) Gaussian 0.0054 0.0032 91.41 40.0 M -0.0025 0.0065 

VC-sand (%) Spherical 0.00028 0.00019 38.14 59.57 M 0.00032 0.0014 
C-sand (%) Spherical 0.00065 0.00049 24.00 57.01 M -0.00063 0.0011 
M-sand (%) Spherical 0.00051 0.00069 37.64 42.50 M 0.00018 0.0013 
F-sand (%) Spherical 0.00137 0.00152 66.14 47.40 M 0.0011 0.0021 
VF-sand (%) Gaussian 0.00063 0.00089 41.02 41.44 M 0.0004 0.0004 
Silt (%) Spherical 0.628 0.72 24.39 46.34 M 0.013 1.333 
Clay (%) Spherical 0.67 0.656 25.83 50.75 M -0.0082 1.302 
Db (%) Spherical 0.00048 0.0014 72.07 24.64 S 0.00033 0.0018 
P g cm-3 Spherical 1.075 0.570 35.58 65.34 M 0.028 1.695 
K mg kg-1 Spherical 17.16 62.403 93.92 21.56 S 0.143 40.104 
CaCO3 mg kg-1 Spherical 1.387 2.53 42.92 35.29 M -0.0108 3.369 
OM (%) Spherical 0.025 0.019 29.28 56.42 M 0.00061 0.035 
N (%) Gaussian 0.000006 0.00010 23.99 5.66 S 0.00006 0.00007 

CEC Cmol(+) 
Kg1 Gaussian 0.084 0.599 52.28 12.29 S 0.0066 0.5729 

ESP (%) Spherical 0.024 0.40 76.41 5.66 S 0.0103 0.432 
Spatial ratio=nugget semivariance / total semivariance, total semivariance=nugget + sill.  
Spatial class: M=moderate spatial dependency, S=strong spatial dependency. 
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The different ranges of spatial correlation for nutrients may be related to the mobility of 
the ions. In the present study, total N, the most mobile of the three ions studied, had the 
shortest range (23.99m) of spatial dependence, whereas K and P, presumably the least 
mobile, were spatially correlated across the longer distance (93.92 m). In addition, spatial 
distribution of total N appeared to be correlated with OM. The ranges of total N and OM 
from the 1.8 ha plot were similar (Table 2). These results are in accordance with the results 
of Cahn et al. (1994).   

A large range indicates that observed values of the soil variable are influenced by other 
values of this variable over greater distances than soil variables which have smaller ranges 
(Lopez–Granadoz et al., 2002). Thus a range of more than 90m for K indicates that K 
values influenced neighboring values of K over greater distances than other soil variable 
(Table 2). 

The soil properties displayed differences in their spatial dependence, as determined by 
their semivariograms (Fig.3). Semivariance ideally increases  with distance between sample  
locations, or lag distance (h), to a more or less constant value (the sill or total  
semivariance) at a given separation distance, i.e. the range of  spatial dependence. Samples 
separated by the distances closer than the range are related spatially, and those separated by 
the distance greater than the range are not spatially related. Semivariogram ranges depend 
on the spatial interaction of soil processes affecting each property at the sampling scale 
used (Trangmar et al., 1985). 

The semivariance at h=0 is called the nugget variance. It represents field and 
experimental variability, or random variability that is undetectable at the scale of sampling 
(Webster and Oliver, 1992). Our sampling schemes were designed to allow the calculation 
of semivariance at small value of h relative to the size of the sampling grid. Isotropy was 
checked with variogram surface calculated by VARIOWIN software.  

There was no anisotropy evidence in the variograms surfaces for any of the soil 
properties.  

Spherical models were defined for CaCO3, clay, ESP, K, OM, Db, pH, Silt and 
Gaussian models were defined for EC, CEC, sand, total N and  SP. The semivariogram for 
total N shows almost zero nugget effect value and a low range of spatial dependence. The 
zero nugget effect value indicates a very smooth spatial continuity between neighboring 
points. On the other hand, the lowest range of spatial dependence (23.99 m) indicates that 
this continuity disappear very fast. It is also confirmed by the results of Vieira and Paz-
Gonzalez (2003). Test of validation was checked with the ME and MSE values (Table 2). 
These values are low indicating that kriging predictions of soil properties are equally 
accurate.  

To determine distinct classes of spatial dependence for soil variables, the ratio of 
nugget/total variance was used. Semivariograms indicated moderate spatial dependence for all 
variables except for CEC, K, Db, total N and Sp that had strong spatial dependence (Table 2). 
Strongly spatially dependent properties may be controlled by intrinsic variations in soil 
characteristics, such as texture and mineralogy. Extrinsic variations, such as fertilizer 
application and tillage, may control the variability of weakly spatially dependent parameters. In 
this case, P had an approximately weaker spatially dependence than the other parameters. This 
parameter may be spatially dependent at scales smaller than those 
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Figure 3. Omnidirectional semivariogram for soil parameters: (a) EC, (b) SP, (c) pH, (d) total sand, (e) bulk 
density, (f) clay, (g) silt, (h) organic matter, (i) phosphorous, (j) cation exchange capacity, (k) total N, (l) CaCO3, 
(m) potassium, (n) exchangeable sodium percentage. 
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Figure 4. Contour maps of soil properties prepared by ordinary kriging: (a) pH, (b) EC, (c) K, (d) SP, (e) Db, (f) 
sand, (g) silt, (h) clay, (i) P, (j) CEC, (k) ESP, (l) Total N, (m) CaCo3 and (n) OM. 
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Figure. 4. cont. - Contour maps of soil properties prepared by ordinary kriging: (a) pH, (b) EC, (c) K, (d) SP, (e) 
Db, (f) sand, (g) silt, (h) clay, (i) P, (j) CEC, (k) ESP, (l) Total N, (m) CaCo3 and (n) OM.
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used for these studies. The existence of this spatial dependency for some soil properties at 
this scale is consistent with results shown in previous studies (Cambardella et al., 1994; 
Lopez–Granadoz et al., 2002).  

Figure 4 shows the contour maps obtained by kriging for soil properties. The 
comparison of these maps may be useful in the interpretation of the results. Visual 
inspection of distribution maps of soil nutrients such as N and P with distribution map of 
OM shows that they are not very identical, indicating that nutrient distributions within the 
field are influenced by fertilizing management. In addition, the quantitative information 
obtained from these maps could be used to facilitate site-specific management in the study 
region.  
 
Conclusion  
 

The results demonstrated that the spatial distribution and spatial dependence level of 
soil properties can be different even within a similar former agricultural management. 
These results support the importance of collecting information in every agricultural region 
to know how a site-specific system should be undertaken. Long-term field management 
histories should be well known since even the same farming practice clearly affected both 
spatial distribution and the level of spatial dependence. Geostatistical techniques offer 
alternative methods to conventional statistics for the estimation of parameters and their 
associated variability.The findings of this study showed that spatial structure exist in the 
soil properties at the field scale in the study area. The soil properties usually have spatial 
dependence and understanding of such structure may provide new insights into soil 
behavior for site-specific management. 
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