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Abstract 
 

Drought is a feature of climate that can occur in virtually all climates. Therefore, it is an 
inevitable global but site-specific phenomenon which requires tools to predict and strategies and 
options to cope with it. In this research, the ability and effectiveness of the Bayesian Decision 
Networks (BDNs) approach in decision-making and evaluating drought management options for 
rainfed wheat production in the eastern region of Golestan Province, Iran are demonstrated. The 
results revealed that during drought conditions, the Koohdasht cultivar had higher yield than 
other cultivars of wheat. Two management scenarios have been specified for the forecasted 
period on the basis of wheat cultivars adopted in the region. The results of scenario analysis 
with a BDN model indicate that the probability of low, medium and high yield levels in scenario 
2 (Koohdasht 70%, Zagros 20% and the other cultivars 10%) has a better status compared with 
scenario 1 (current condition). The paired t- test indicates that there is a significant difference 
between the two scenarios for wheat yield in low and medium states (P<0.05). Adopting 
appropriate cultivars in the region with favourable yield and adaptability to drought conditions 
proved to be an effective management action. The BDN approach implemented in this research 
serves as a valuable tool to represent the system as a whole, to integrate outputs from models 
and expert judgment, to evaluate the outcomes necessary for decision-making and to 
communicate uncertainty of the parameters in the model. 
 
Keywords: Agricultural drought; Bayesian decision model; SARIMA; Management scenarios; 
Rainfed wheat; Golestan Province.  
 
Introduction 
 

For countries situated in arid regions such as Iran, the characterisation of drought has 
become increasingly important to environmental management. Drought is an extended 
period of time when a region experiences a deficiency in water supply. It can have 
substantial impacts on the ecosystem and agriculture of the affected region (Palmer, 
1965). Climate change is very likely to affect the frequency and intensity of extreme 
events such as droughts and floods. Future climate change can be projected by global 
climate models such as General Circulation Model (GCM) (IPCC, 2001). Koocheki et al. 
(2006) used the UKMO1 model to anticipate the climate change and agro-climatic 
                                                
1- United Kingdom Meteorological Organization 
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indicators for 25 meteorological stations in Iran. The UKMO model predicted an increase 
in temperature up to 2.7 °C and a reduction in rainfall up to 12% by 2050. In recent years, 
frequent and severe droughts have incurred extensive damages to the environment and 
agricultural sector and it is anticipated to worsen in future due to climate change. Roshan 
and Grab (2012) reported that water deficit during growing season of winter wheat 
producing areas of Iran will increase from 5.2% in 1980 to over 23% by 2050 and 38% by 
2100.As a result, the death toll of livestock and wildlife was unprecedented.  

Agricultural drought occurs when there is not sufficient soil moisture content to 
meet the needs of a particular crop for a specific period of time. Agricultural drought 
is a difficult concept to characterise as it involves not only the range of water 
deficiency in the whole system, but also water shortage in relation to plant water 
demand. The water demand of a crop, in turn, depends on its variety, state and stage of 
growth (Webster, 1978).  

In this paper, an approach for the development and application of a Bayesian 
Decision Network (BDN) model for agricultural drought management is described. 
BDN models, which come from a marriage between probability theory and graph theory 
(Jordan, 2004), provide remarkable features to deal with both the complexity of natural 
systems and with the need to support the decision making process despite scientific 
uncertainty and a lack of data and knowledge (Borsuk, 2001). Being a graphical model, 
BDN structures the problem based on a conceptual model framework assigned to the 
system, so it is visually interpretable by stakeholders and decision-makers (Ames et al., 
2005). In addition, as results are presented in a probability context, BDNs give an 
explicit representation of uncertainty (Bromley, 2005). The BDN analysis includes a 
graphical model of some linked key variables in a system associated with conditional 
probability distributions derived from a variety of data and information. BDNs have 
been applied to a variety of natural resource management issues. For example, Dorner  
et al. (2007) employed a BDN to assess the impacts of agricultural non-point source 
pollution on a catchment scale. Sadoddin et al. (2005) developed a catchment-scale 
BDN to assess the ecological impacts of dryland salinity. Water resource management 
and stakeholder involvement in decision making were the focus of projects described in 
Bromley et al. (2005) and Hendriksen et al. (2007). Sadoddin (2010) using BDNs 
predicted the socio-economic and biophysical impacts of biological scenarios for 
salinity management for the Little River Catchment in NSW, Australia. The aim of this 
paper is to demonstrate a Bayesian decision model as an integrated approach for 
agricultural drought management in the east of Golestan Province, where it is one of  
the main areas of wheat production as a staple food in Iran. The model is used to:  
1) estimate the probability of agricultural drought occurrence in the east of the Golestan 
Province and 2) estimate the probability of changes of farmers' income from wheat 
cultivars under two management scenarios.  
 
Materials and Methods 
 
Description of study area 
 

Golestan Province is located in the northeast of Iran. It has an area of about 20,378 
km2 and geographically lies between 53° 50' and 56° 18' East longitude and 36° 25' and 
38° 08' Northlatitude. More than 90% of crops cultivated in this province are wheat, 
barley, rice, cotton and soybean. About 83% of rainfed wheat farmlands are spread over 
eastern parts of the province within the political boundaries of four townships, Gonbad, 
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Kalaleh, Minoodasht and Azadshahr (see Figure 1 and Figure 2). The dominant wheat 
cultivars in the study area are Koohdasht, Zagros, LineA, Tajan, Azar 2, Sardari  
and Niknejad (Rainfed Agriculture Research Institute of Iran, 2004). Mean annual 
precipitation varies from 252 mm in Til-abad climatology station to 840 mm in Lazoreh 
station. Mean annual temperature is about 18.2 °C. In order todetermine the drought 
condition, 10 climatology stations within and in the vicinity of the study area were 
considered. The locations of the stations are shown in Figure 1.  
 

 
 
Figure 1. Location of the study area and distribution of climatology stations. 
 

 
 
Figure 2. The spatial distribution of rainfed wheat farmlands in the east of Golestan Province.  
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Model development using a BDN 
 

BDNs can be categorically considered as a fundamental modelling tool for decision-
making and management where uncertainty is a key consideration (Sadoddin, 2010). 
Nodes in the conceptual framework of a BDN represent decision, state, utility or impact 
variables, while arrows or links between nodes represent conditional probability 
distributions (Letcher and Weidemann, 2004). Relationships among variables (nodes) 
are connected by arrows that represent causal dependencies or an aggregate summary of 
complex associations (Reckhow, 2003). 

A key step in model development is the specification of a conceptual framework for 
the model (Letcher and Weidemann, 2004). A conceptual model is a descriptive model 
of a system based on quantitative and qualitative assumptions about its elements, 
variables’ interrelationships and system boundaries. It is an aid to conceptualise and 
investigate the interaction between the linked components of a management system. 
Figure 3 shows the conceptual framework underlying the BDN developed for the 
agricultural drought management in the east of the Golestan Province. This framework 
incorporates the variables of agricultural drought in rainfed wheat production.  
 

 
 
Figure 3. Conceptual model framework for agricultural drought management in the east of Golestan 
Province.  
 

The BDN model was developed through the following three steps: (1) development 
of the conceptual model framework, (2) identifying probable management scenarios,  
(3) quantifying the system parameters in a probabilistic context using Bayes’ rule 
(Baran and Jantunen, 2004). It is easy to define P(A|B) without reference to the joint 
probability P(A,B) (Equation 1).  
 

)(/)()|()|( BPAPABPBAP                                                                                     (1) 
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Where P(A) is the prior probability of A. It is prior in the sense that it does not take 
into account any information about variable B; P(A|B) is the conditional probability of 
A, given B. It is also called the posterior probability because it is derived from or 
depends upon the specified value of variable B; P(B|A) is the conditional probability 
of B given A. It is also called the likelihood and P(B) is the prior probability of B  
and acts as a normalising constant. Conditional probability tables with valuable 
information can be used in Bayes’ rule to make final probabilities of the end node 
variables in the BDN model.  

To estimate the probability of wheat yield during the forecast period, especially 
during the drought condition, two management scenarios were specified on the basis  
of wheat cultivar proportions. Scenario 1 refers to the current condition and scenario  
2 is defined as the cultivar proportion of Koohdasht 70%, Zagros 20% and the other 
cultivars 10%. 

To quantify the parameters of the BDN model, the following steps were conducted: 

 Applying the GCM under the UKMO Scenario to predict the probable impacts of 
climate change on precipitation and temperature, 

 Forecasting the amounts of precipitation and temperature applying a SARIMA model 
for four years ahead, starting from 2008 and 

 Characterising agricultural drought using the FAO Penman-Monteith method and 
elicitation of expert knowledge. 

 
Time series 
 

A time series is a set of observations that are arranged chronologically. In time series 
analysis the order of occurrence of observations is crucial. In time series analysis, a 
variety of different important technical terms are available such as stationarity, 
periodicity and trend which fall into temporal categories interpreted as a form of 
statistical equilibrium (Li et al., 2003). For interpretation purposes, it is often useful to 
plot the autocorrelation function (ACF) against lag time. The main purpose of time 
series analysis is forecasting the future events using past records (Mishra and Desai, 
2005). In order to forecast the agricultural drought, the precipitation and temperature 
amounts of four years from 2008 onwards have been forecasted using SARIMA model 
(see Equation 2).  
 

        t
s

Qqt
D
s

ds
pP aBBZBB                                                                               (2) 

 
where p is the non-seasonal autoregressive degree; d is the difference degree; q is the 

non-seasonal moving average; P is the seasonal auto regressive degree; D is the 
seasonal difference degree; Q is the seasonal moving average and s is season duration. 
In order to choose the best SARIMA model, the SARIMA data analysis strategy (Figure 
4) was followed. 
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Figure 4. SARIMA data analysis strategy (Source: Meekers, 2004).  
 

The SARIMA model was evaluated with the Nash-Sutcliffe (NS) coefficient 
(Lhomme, 2004). A value of NS equal to 1 implies that predicted and observed data are 
in perfect match (Nash and Sutcliffe, 1970). Equation 3 calculates the Nash-Sutcliffe 
efficiency.  
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where Ysi and Yoi are the predicted and observed data, respectively; oY  represents 
the mean of observed data and n indicates the number of observations.  
 
Calculation of agricultural drought 
 

The FAO Penman-Monteith method was used to calculate the agricultural drought 
condition (Cai, 2007). This method is similar to the Crop Moisture Index without 
considering the amount of soil moisture. In this method we have used the amount of 
effective rainfall instead of precipitation. The FAO Penman-Monteith and Soil 
Conservation Service methods were used to calculate the potential evapotranspiration 
and effective rainfall, respectively. 
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                                                 (4) 

 
where ETo is the reference evapotranspiration (mm day-1); Rn is net radiation at  

the crop surface (MJ m-2 day-1); G is soil heat flux density (MJ m-2 day-1); T is mean 
daily air temperature at 2 m height (°C); U2 is wind speed at 2 m height (m s-1); es is 
saturation vapour pressure (kPa); ea is actual vapour pressure (kPa); es - ea is saturation 
vapour pressure deficit (kPa); D is the slope of vapour pressure curve (kPa °C-1) and γ is 
the psychrometric constant (kPa °C-1). 
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where Raineff is effective monthly precipitation (mm); Rain is monthly precipitation 

(mm); ET is monthly evapotranspiration (mm/period) and IR is irrigation depth. The 
calculations were carried out using CROPWAT software package (Smith, 1992).  
 
Results 
 
SARIMA model 
 

As mentioned earlier, based on ACF and PACF, time series analysis for each 
meteorological station has been conducted. According to the appropriate P value and 
minimum mean square error, the best model was chosen. In the next step, the 
comparison of observed and predicted data was made using the Nash-Sutcliffe 
coefficient. In most of the meteorological stations, reasonable results were achieved 
(Table 1 and Table 2). To incorporate the probable climate change impacts into the 
result, the SARIMA results were adjusted under the UKMO Scenario. 
 
Table 1. The amount of R2 and NS coefficients for predicted monthly precipitation across different 
climatology stations.  
 

Climatology station R2 NS 

Arazkouseh 0.53 0.49 

Galikesh 0.29 0.29 

Gonbad 0.53 0.52 

Lazoreh 0.7 0.69 

Nodeh 0.58 0.54 

Tangerah 0.48 0.46 

Tilabad 0.65 0.51 
 
Table 2. The amount of R2 and NS coefficients for predicted monthly temperature of Gonbad climatology 
station.  
 

Station Variable R2 NS 

minimum temperature 0.96 0.96 
Gonbad 

maximum temperature 0.93 0.93 

 
Based on the results, the correlation coefficients of all stations are significant at a 

99% confidence level. According to the Table 1, the best NS coefficient corresponds to 
the Lazoreh Station with a value of 0.69 and the worst one is related to the Galikesh 
Station with a value of 0.29. This is on account of a greater variability of precipitation in 
this station compared to most of the other climatology stations considered in this 
research. Figures 5 to 8 show the results of SARIMA modelling and the comparison 
between the observed and predicted data at the Nodeh Station as an example. 
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Figure 5. Standardised residuals, ACF of residuals and P value for Ljung-Box statistic for the Nodeh 
climatology station.  

 

 
 

Figure 6. Normal Q-Q, PACF and ACF plots for the Nodeh climatology station.  
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Figure 7. Observed and predicted amount of precipitation distribution in 95% confidence interval for the 
Nodeh climatology station.  
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Figure 8. Comparison of SARIMA results versus observed data during evaluation period for the Nodeh 
climatology station.  
 
Agricultural drought  
 

Using the FAO Penman-Monteith method, the water requirement has been calculated 
for both the evaluation period (1988 to 2007) based on the observed meteorological data 
and also for the subsequent four years (2008 to 2011) using the data forecasted by 
SARIMA model. It should be noted that the forecasted data have been adjusted for 
climate change scenarios based on UKMO projections. Then, the occurrence probability 
of different states of agricultural drought for the study area was determined. The 
occurrence probability of severe and mild drought was calculated to be 19% and 52%, 
respectively. The occurrence probability of normal condition was considered to be 29%. 
 
Conditional probability tables 
 

The information required to construct the probability table of rainfed wheat yield for 
the study area was derived from the probability of drought conditions observed in the 
past and associated wheat yield of various cultivars (Table 3). 
 
Table 3. Conditional probability table of rainfed wheat yield across different drought conditions and 
wheat cultivars in the east of Golestan Province, Iran.  
 

Wheat yield* 
Drought condition Wheat cultivars 

Low Medium High 
Severe Koohdasht 30.02 44.18 25.8 
Severe Zagros 54.61 39.7 5.69 
Severe Others** 62.5 36.21 1.29 
Mild Koohdasht 29.82 52.25 17.93 
Mild Zagros 44.37 54.17 1.46 
Mild Others 58.2 40.3 1.5 
Normal Koohdasht 5.4 57.86 36.74 
Normal Zagros 8.12 86.9 4.98 
Normal Others 35.1 58.61 6.29 

* High yield: more than 3000kg/ha; Medium yield: 2000-3000kg/ha; Low yield: less than 2000kg/ha.  
** Line A, Tajan, Azar 2, Sardari and Niknejad wheat cultivars. 
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Table 4 shows the conditional probability table of agricultural drought under 
different conditions of evapotranspiration and effective rainfall during the growing 
season of wheat in the east of Golestan Province.  
 
Table 4. Conditional probability table of agricultural drought under different conditions of 
evapotranspiration and effective rain during the growing season of wheat in the east of Golestan Province, 
Iran. 
 

Agricultural drought 
Evapotranspiration condition* Effective rain** 

Normal Mild Severe 

Low Low 0 75 25 

Medium Low 0 76 24 

High Low 0 57 43 

Low High 100 0 0 

Medium High 90 10 0 

High High 0 0 0 
* Evapotranspiration levels: Low < 250 mm/period, Medium: 250-270 mm/period and High:  
> 270 mm/period.  
** Effective rain levels: Low <250 mm and High >250 mm.  
 
Total probability distribution 
 

Using Tables 3 and 4, the total probability distribution of wheat yield was calculated 
using Bayes’ rules under different drought conditions (see Table 5). The analysis 
indicates that for the mild and normal drought conditions, the probability of occurrence 
of wheat production at the state of medium is greater than that for the states of low and 
high. In contrast, the probability of occurrence of wheat production is greater at the state 
of low in the case of severe drought condition. 
 
Table 5. Total probability distribution of rainfed wheat yield in different drought conditions. 
 

Rainfed wheat yield (percent) 
Drought condition 

Low Medium High 

Severe 44.96 40.89 14.13 

Mild 41.16 49.47 9.3 

Normal 14.16 65.27 20.56 

 
As shown in Table 5, the change in the likelihood of the combined Medium and High 

yield under the drought conditions is sensible. Somewhat similar likelihood of High 
yield under a severe drought and a normal year has been achieved. This can be justified 
by the definition of the Medium and High yield in this research.    
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Figure 9 illustrates the system parameters of BDN based on the data recorded in  
the past, along with the information of Table 5 and the census of agriculture in the study 
area.  
 

 
 

Figure 9. BDN system parameters based on recorded data and census of agriculture in the study area. 
Costs and revenues are in Iranian Rials per hectare.  
 

The analysis of the status of agricultural droughts based on the BDN framework 
indicates that during the past two decades, mild and/or severe agricultural droughts have 
occurred in the east of Golestan Province in about 71% of cases. 

The status of agricultural drought forecasted for four years starting from 2008 has 
been presented in Figure 10. These results support the calculation of probability of 
drought occurrence using the BDN model under the two scenarios (see Figure 11). 
 

 
 

Figure 10. Agricultural drought classes forecasted between 2008 and 2011 at climatology stations located 
in the study area.  
 

The results of scenario analysis indicate that scenario 2 (Koohdasht 70%, Zagros 
20% and the other cultivars 10%) shows a better performance than scenario 1 (the 
current condition) in terms of crop yield.  
 
 



538 A. Sadoddin et al. / International Journal of Plant Production (2016) 10(4): 527-542 

 

 
 
Figure 11. BDN parameters of: A) Scenario 1 based on forecasted variables for 2008; B) Scenario 2 based 
on forecasted variables for 2008; C) Scenario 1 based on forecasted variables for 2009; D) Scenario 2 
based on forecasted variables for 2009; E) Scenario 1 based on forecasted variables for 2010; F) Scenario 
2 based on forecasted variables for 2010; G) Scenario 1 based on forecasted variables for 2011;  
H) Scenario 2 based on forecasted variables for 2011. 
 
Discussion and Conclusions 
 

Natural resources management deals with complex and heterogeneous issues. There 
is often a paucity of information about one or more processes involved in natural 
systems. Models that rely on data alone (e.g. traditional deterministic or process 
models) are not suitable to assess uncertain processes in the system. BDNs provide a 
way to overcome data limitations by incorporating input data from different sources. 
Therefore, BDNs are considered as useful tools for addressing uncertainty in data as 
well as for combining data, model simulation and expert knowledge (Uusitalo, 2007). 

In this study, the Bayesian decision modelling approach as an integrative 
management tool has been applied to predict the outcome of implementing different 
wheat cultivars in order to reduce the consequences of agricultural drought conditions 
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on crop yield as well as on farm income. The results of this study indicate that the 
SARIMA model was capable of forecasting the amount of monthly precipitation. 
However, the SARIMA model forecasted the monthly temperature more precisely than 
monthly precipitation values. The application of the UKMO climate change scenarios in 
the analysis did not produce a statistically significant difference in the results of 
SARIMA forecasts for the period of 2008 to 2011. This is mainly due to the short length 
of the project period (IPCC, 2001). The analyses indicate that the probability of drought 
occurrence is higher than normal condition in the study area. Therefore, it is crucial to 
consider the water demand of different varieties of wheat, as a strategic agricultural 
product, particularly during drought conditions. As discussed earlier, in this study two 
scenarios with different combination of wheat cultivars with various water requirement 
have been developed and their outcomes in terms of crop yield and revenue with respect 
to different drought condition have been investigated. The analysis revealed that there is 
a significant difference between the two scenarios with respect to crop yield for the low 
and medium states of yield variable in the BDN network (P<0.05). However, in case of 
the high state of yield variable there is no a significant difference between the two 
scenarios. This indicates that under drought conditions in the study area, it is still 
possible to reduce the impacts of agricultural drought by planting wheat varieties which 
are more tolerant to the drought conditions. The research outcomes also suggest that 
there is a need to introduce and/or encourage the use of Koohdasht cultivar through 
extension practices among the farmers in eastern parts of Golestan Province. This can 
be achieved without any financial hurdle on farmer communities and local authorities.  
The social and cultural attitudes of farmers play a major role in the success of the 
extension practices which should be considered in the study area. Any success in this 
regard will lead to an economic improvement among the farmers which are mainly 
dependent on wheat yield.  

However, this research does not provide the ultimate answers to agricultural drought 
problems, given the limitations of the data and information about actual drought 
management and its various consequences. When new data on the outcomes of drought 
management options are received, the state of the entire system can be updated, leading 
to ongoing improvements in the models capacities. To achieve an actual agricultural 
drought management, some other driving factors such as cropping calendar and 
supplemental irrigation should be incorporated in the modelling process.  

As with any other model, a Bayesian decision network is a finite representation of a 
complex world based on a set of assumptions. A key strength of a Bayesian decision 
network is the transparency of assumptions. This allows its users to identify the 
information included in the model, as well as the information excluded from the model 
(Rasmussen et al., 2012).  

The development of a decision analysis tool using the BDN approach for the study 
area has addressed the need for an integrated approach arising from the nature of 
environmental management, in general and management of agricultural drought in the 
area, in particular. The BDN approach implemented in this research serves as a valuable 
tool to represent the system as a whole, to integrate outputs from models and expert 
judgment, to evaluate the outcomes necessary for decision-making and to communicate 
uncertainty of the parameters in the BDN model. 
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