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Abstract 
 

China’s sugar production and consumption continues to increase. This process is already 
ongoing for over 15 years and over 90% of the sugar production comes from sugarcane 
(Saccharum officinarum). Most of the sugarcane is planted in the south (e.g. the Chinese 
provinces of Yunnan, Guangxi, Guangdong and Hainan) and it represents there a major 
economic crop in these landscapes. As found virtually worldwide, climate change is generally 
expected to influence such suitable planting areas. Here we started a first empirical assessment 
how climate change would influence the spatial distribution of those current and future suitable 
planting areas of this strategic crop in China. We employed an ensemble machine learning 
algorithm (Random Forest; bagging) and increasingly used and robust species distribution 
models (SDMs). These are based on our compiled and best publicly available crop data sampled 
from the Chinese sugarcane industry map. They were linked with bioclimate variables from  
the Worldclim database. This powerful concept allowed us to project sugarcane’s current and 
future (2070) suitable distributions based on the climate niche. Our results were extrapolated to 
three Global Circulation Models (GCMs; BCC-CSM1-1, CNRM-CM5 and MIROC-ESM) 
under three representative concentration pathways (RCPs of 2.6, 4.5 and 8.5). The evaluations 
of these models indicated that our results had a powerful performance (AUC=0.97, TSS=0.96) 
for robust inference. Bioclimatic variables related to temperature were the most important 
predictors for sugarcane planting. All models showed similar increasing spatial trends in 
suitable distribution area and just a few original suitable areas would be lost. Our finding puts 
emphasize on new growing areas, their soil and management. It is the first to provide the 
necessary background in the future to safely cultivate sugarcane in climate-suitable areas and to 
obtain more sugar production for farmers and the industry; it is of large and strategic importance 
for food security and national autonomy of this central commodity.   
 
Keywords: Sugarcane; Climate change; China; Species distribution model (SDMs); Random 
forest (bagging) and machine learning; Food security.  
 
Introduction 
 

Sugar represents these days a basic commodity in human society. During the past 
fifteen years, sugar production and consumption in China are on the rise, growing app. 
2.8% - 6.4% per year. It reaches 11.87 million tons and 14.50 million tons in 2011 
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respectably and the Chinese import currently stands at 2.63 million tons (Li and Liu, 
2013). In 2011 over 90% of the sugar production and 85% of the sugar crops planting 
areas are derived from sugar cane (Fu, 2013; Li and Liu, 2013). Climate is among the 
most dominant factor that affects species distribution across broad spatial scales 
(Woodward, 1987; Pearson and Dawson, 2003). The Intergovernmental Panel on 
Climate Change (IPCC; http://www.ipcc.ch/) (2012) predicts in its scenarios global 
temperatures to increase by about 1 to 3 °C by the mid 21st century and by the late 21st 
century an increase of 2 to 5 °C is predicted. How such a climate would impact 
sugarcane’s suitable distribution and its change in China remains currently unknown, so 
far. Equally elusive remains it influence on national agricultural policy, food security 
and the world economy.  

Sugarcane makes for a major economic crop in southern China and it represents a 
staple industry in some areas. It’s also the main raw material of sugar production and 
the dominating plant in the Guangxi, Yunnan, Guangdong and Hainan Provinces. In 
recent years, with the new adjustment of the country’s industrial structure, the central- 
south of Guangxi, southwest of Yunnan, west of Guangdong and north of Hainan will 
be specifically developed into three major sugarcane-planting areas (Fu, 2013). 

Several researchers have already made in-depth studies elsewhere regarding the 
effects of climate change on sugarcane growth and water requirements from irrigation. 
For instance, Knox et al. (2010) researched this issue in Swaziland and these authors 
found it will fail to meet the irrigation demand in the future with unfolding climate 
change. In South Brazil, Marin et al. (2013) found that sugarcane yield will increase 15 
to 59% for 2050. Long et al. (1994) found that China will benefit from climate change, 
but needs to pay attention to precipitation change in the future. More locally, Chen 
(2003) showed that sugarcan-production will be negatively affected by climate change 
in the Fujian Province. Xie et al. (2006) noted the inprovement of Autumn temperature, 
decrease of Autumn precipitation and increase of Winter precipitaion in the current 
climate condition would act negatively for sugar accumulation in Xuwen, Guangdong 
Province. To regionalize climate models for sugarcane growth investigations in China, 
reseachers usually applied a so-called ‘small grid’ climate analysis method. They used 
this approach and combined it with physiology knowledge of sugarcane in a Geographic 
Information System (GIS) to divide land into different suitable classes (see for instance 
Xie and Yan (2004) for Fujian Province; Tu et al. (2003) and Su et al. (2006) for 
Guangxi Province; Liu et al. (2009) for Hainan Province).  

As a quite novel method in precision farming, species distribution models (SDMs) 
include process-based and bioclimatic envelope approaches and they are able to 
successfully quantify the relationship between species distribution and climate (Guisan 
and Zimmermann, 2000; Elith et al., 2006; Drew et al., 2011; Mi et al., 2016). SDMs 
have become an essential tool in ecology, biogeography, evolution and, more recently, 
in conservation biology (Drew et al., 2011). Increasing attention has been given to 
project potential species distributions under various climate change scenarios, all based 
on those methods (Dyer, 1995; Iverson and Prasad 1998; Hijmans and Graham, 2006; 
Prasad et al., 2006; Wu et al., 2012). While SDMs perform pretty high for wildlife 
questions (e.g. Kandel et al., 2015), they tend to perform even better for stationary 
processes like plants (Elith et al., 2006; Ohse et al., 2009). In this study, we chose 
Random Forest (Breiman, 2001) as our species distribution model machine learning 
algorithm because of its good performance and common usage (Zhai and Li, 2003; Elith 
et al., 2006; Drew et al., 2011; Mi et al., 2014). Random Forest is a relatively new entry 
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to the field of data mining, it employs bagging and it is designed to produce accurate 
predictions that usually do not overfit the data (Breiman, 2001; Prasad et al., 2006). This 
approach is not hinging on parametric assumptions. This is achieved by the use of 
‘partition trees’ and with the model aggregation (ensemble) concept, for both 
classification and regression problems, as officially introduced by Breiman (2001). In 
machine learning, it belongs to the wider family of ensemble methods, a rather powerful 
group of algorithms appearing at the end of nineties (Dietterich, 2000). The general 
principle of Random Forest is to combine many binary decision trees built using several 
bootstrap samples of rows coming from the learning sample and then choosing 
randomly at each node a subset of explanatory variables (predictors), hence the name 
‘random’ forests (Prasad et al., 2006; Genuer et al., 2010). A method called ‘voting’ 
creates the final tree. Out-of-bag (OOB) samples are used to calculate an unbiased error 
rate and variable importance, eliminating the need for a test set or cross-validation. 
These steps are usually referred to as ‘bagging’. Details vary on the actual software 
implication; here we are using the Leo Breiman one with Salford Systems Ltd (SPM; 
https://www.salford-systems.com/).  

Though research has been done on the impacts of climate change for sugarcane 
growth and yield locally and abroad, in China such study usually is restricted to a 
provincial scale or even a county scale. Some research has reported on incorporating 
climate change into crop distribution (Beck, 2013; Estes et al., 2013; Evangelista et al., 
2013). However, no research works with the appropriate macro-ecology approach and 
reported on the effects of climate change on sugarcane distribution, especially applying 
SDMs explicit in space ad time. Using those methods, the purpose of this investigation 
here was to explore whether and how climate change would influence the spatial 
distribution of the current climate-suitable planting areas of sugarcane in China. This 
topic was identified as being of large importance for food security beyond just China 
but with a global impact! It’s a worthwhile scheme nationally because it certainly 
matters for governors and farmers in providing them with the necessary background to 
cultivate sugarcane plants and breed species in climate-suitable areas to obtain a valid 
sugar harvest and a sustainable income.  
 
Materials and Methods 
 
Study area and data source 
 

Our first-step study area encompassed the whole country of China (Figure 1). Crop 
data for sugarcanes were derived from the layout of the Chinese Sugarcane Industry 
(Zhang, 2013), which mapped the three major sugarcane-planting areas (central-south of 
Guangxi, southwest of Yunnan, west of Guangdong and north of Hainan in related four 
provinces (Fu, 2013)). Then we selected the sugarcane-planting counties from maps and 
geo-referenced two samples (planting sites) in each county (farmland region) with 
ArcGIS10.1. Though random sampling could be used to determine the planting sites in 
a representative fashion and satisfies our aim, we did not use this method because of our 
geographic projection scale, which was the whole of China. We determined the GPS 
sites from Google Earth by locating the points in the farmland. Overall, we obtained 176 
geo-referenced locations in our study area (see Figure 1 and data made publicly 
available as Open Access data in Appendix 1) which is one the best sugarcane databases 
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for farming in China to now. One thing one needs to notice here is that our samples just 
represent the location of major sugarcane-planting areas but not the whole region of 
sugarcane plants. So our model estimates are carefully conservative underestimates.  
 

 
 
Figure 1. The Study area for predicting the climate-suitable planting area and zoom in for sugarcanes 
across China.  
 
Environmental variables 
 

Current climate conditions (1950–2000) were represented by 19 bioclimatic variables 
at a 30 seconds resolution acquired from the public open access Worldclim database 
(Hijmans et al., 2005; http://www.worldclim.org/). We chose these 19 variables to 
develop our model as stated in Evangelista et al. (2013). To obtain a valid future 
estimate we used three future climate scenarios for 2070 (average for 2061–2080). 
Future climate scenarios were also obtained from the Worldclim database. The data 
applied here are the most recent IPCC-CMIP5 climate projections from three GCMs 
(BCC-CSM1-1, CNRM-CM5 and MIROC-ESM, hereafter BC, CN and MR) under 
three representative concentration pathways (RCPs of 2.6, 4.5 and 8.5, which are  
named after a possible range of radiative forcing values in the year 2100, relative to  
pre-industrial values (+2.6, +4.5 and +8.5 W/m2, respectively).  
 
Model development and evaluation 
 

We chose Random Forest (Breiman, 2001) by Salford Systems Ltd as our species 
distribution model (SDM) algorithm and model software platform. Random Forest in 
SPM runs with a convenient GUI and even more importantly, it includes a number of 
sophisticated optimizations, descriptive results and graphics which are not readily 
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available in the R version (Herrick, 2013 for a comparison). This algorithm is among 
the best modeling algorithms available (Elith et al., 2006) and performs so well due to 
their inherent optimizations in Salford Predictive Modeler (SPM) (Herrick et al., 2013; 
Kandel et al., 2015). For more details on Random Forest, we refer readers to read the 
user guide (https://www.salford-systems.com/ products/spm/userguide) and references 
within (see also Drew et al., 2011). 

For model construction, about 10,000 representative pseudo-absence points were  
taken by random sampling across all of China using the freely available Geospatial 
Modeling Environment software (GME; Hawth’s Tools; http://www.spatialecology.com/ 
htools/tooldesc.php).  

We extracted the climate information from environmental layers for ‘presence’ (176 
plant locations) and the pseudo-absence points. Then we constructed a sugarcane model 
in SPM with 80% of the dataset (140 presence points and 8,000 pseudo-absence points 
with climate information). The left-out 20% (36 presence points and 20 pseudo-absence 
points with climate information) were used for testing model performance. In addition, 
we used balanced class weights; 1,000 trees were built for all models to find an 
optimum within, other settings used the default which is known to perform very strong. 

Area under the receiver operating characteristic curves (AUC) (Swets, 1988; Fielding 
and Bell, 1997) and the True Skill Statistic (TSS) (Allouche et al., 2006) were used as 
metrics to evaluate sugarcane model performance applying testing data. AUC and TSS 
are commonly used to evaluate SDMs performance (Manel et al., 2001; McPherson  
et al., 2004; Mi et al., 2016). AUC takes values between 0 and 1, with 0.5 meaning  
no relevant agreement (essentially random), 0 an inverse relationship (errors better 
predicted) and 1 perfect agreement (Randin et al., 2006). TSS ranges from -1 to +1, 
where 1 indicates perfect agreement and values of <0 indicate models that perform 
worse than random. AUC and TSS in our study were calculated with the ‘SDMTools’ 
package in R 3.1.0. 
 
Current and future projection 
 

We created 10 ‘lattice’ data cubes (equally spaced points across China; 
approximately 5×5 km spacing for the study area). One is for the current climate 
condition in China and 9 others are for future climate conditions of three GCMs in three 
scenarios we want to predict to. For each of these latticeswe extracted climate 
information from the same environmental layers (19 bioclimate variables) as described 
above for each point. We then used the model to predict (‘score’) sugarcane presence 
for each of the regular lattice points. For visualization, we imported the dataset of 
spatially referenced predictions (‘score file’) into GIS as a raster file and interpolated 
for visual purposes between the regular points using inverse distance weighting (IDW) 
to obtain a smoothed predictive map of all pixels in a high resolution for the sugarcane 
distributions (as performed in Ohse et al., 2009, Booms et al., 2010).  

Next, we used the average predicted index of occurrence across the three GCMs 
(BCC-CSM1-1, CNRM-CM5 and MIROC-ESM) for each grid as our consensus forecast 
(named BCM, taking the first letter of each of the three GCMs). This step was considered 
as one of the best methods for developing an ensemble forecast (Hole et al., 2009). 
Subsequently, we chose the threshold when the absolute value of ‘sensitivity-specificity’ 
get the minimum value (which usually is zero) as the suitable distribution threshold to 
define the presence–absence distribution of sugar cane’s suitable cultivating areas. This 
method has been found to be a robust approach (Liu et al., 2005, Mi et al., 2016). 
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Spatial analysis of potential effects of climate change 
 

We applied ArcGIS 10.1 to calculate the suitable areas of sugar cane for two time 
periods (current, as well as 2070) under three scenarios (RCPs of 2.6, 4.5 and 8.5) from 
three GCMs (BC, CN and MR) and their average (BCM). We also used the overlay 
analysis (in ArcGIS 10.1) to assess the potential distribution changes of this crop. This 
allowed us to identify areas of the planting range that is projected to be lost, gained or 
remaining under future climate scenarios (Mi et al., 2016). 
 
Results 
 
Model performance and current distribution of sugarcane 
 

Our model obtained a rather high performance measured by AUC and TSS  
(0.97 and 0.96, respectively), which means our model was classified as very accurate 
(based on Swets, 1988; Allouche et al., 2006).   

Figure 2 shows the current climate suitable distribution map of sugarcane across 
China, as well as the zoom-in figures for major sugarcane-planting areas for a better 
overview. We found the most suitable planting ranges were the Yunnan, Guangxi, 
Guangdong and Hainan Provinces (Figure 2a). Besides, we also found that some places 
in Tibet, Sichuan, Guizhou, Fujian and Taiwan Province were also suitable planting 
regions for sugarcane, but not as suitable as the former four provinces. Figure 2(b) 
indicates that most parts of highly suitable places predicted in Yunnan have already 
been covered by sugarcanes; Guangxi Province still offers numerous suitable areas in 
the northwest and southeast, as well as the center-west of Guangdong which could grew 
sugarcanes (Figure 2c, 2d); From Figure 2e, we observed that almost half of the lands in 
Hainan Province were suitable for sugarcane cultivation, especially in the northwest 
direction.  
 
Variable importance 
 

Table 1 presents the top five predictor variables ranking and importance values 
obtained from the Random Forest metric (the detailed variable rankings and importance 
values for all 19 predictors can be seen in Appendix 2). We found the top five predictor 
variables were all temperature-related. The most important predictor to sugarcane 
distribution was BIO11 (Mean Temperature of Coldest Quarter), followed by BIO7 
(Temperature Annual Range) and then was BIO6 (Min Temperature of Coldest Month), 
the last two were BIO9 (Mean Temperature of Driest Quarter) and BIO4 (Temperature 
Seasonality).  
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Figure 2. The current climate-suitable planting area of sugarcane predictions obtained from Random 
Forest. Zones within red line represent the current major planting counties of sugarcanes. (a) current 
sugarcanes climate-suitable planting area across China, (b) current sugarcanes climate-suitable planting 
area in Yunnan Province, (c) current sugarcanes climate-suitable planting area in Guangxi Province, (d) 
current sugarcanes climate-suitable planting area in Guangdong Province, (e) current sugarcanes climate-
suitable planting area in Hainan Province. 
 
Table 1. The top five variables ranking and importance value of Random Forest.   
 

Variable Score 

BIO11 (Mean Temperature of Coldest Quarter) 100.00 

BIO7 (Temperature Annual Range (BIO5-BIO6)) 81.19 

BIO6 (Min Temperature of Coldest Month) 60.58 

BIO9 (Mean Temperature of Driest Quarter) 60.03 

BIO4 (Temperature Seasonality (standard deviation *100)) 47.66 
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Partial dependence plots of Random Forest  
 

Partial dependence plots provide a tool for interpreting the functional effects of each 
variable in the model by representing a variable's marginal effects on the response, after 
accounting for the average effects of other variables in the model (Friedman, 2001; 
Johnstone et al., 2010). We created these plots in R 3.1.0 (Figure 3) for Random Forest 
describing the generic relationship between sugarcane distribution and each variable. 
Figure 3a indicates the preference of sugarcanes for BIO11 (Mean Temperature  
of Coldest Quarter) >85 (10*ºC). BIO7 (Temperature Annual Range (BIO5-BIO6)) 
<270 (10* ºC) also appears to be important for the distribution of this crop (Figure 3b). 
According to Figure 3c, sugarcane favors BIO6 (Min Temperature of Coldest Month) 
larger than 0 (10*ºC). For the fourth important variable, BIO9 (Mean Temperature of 
Driest Quarter, Figure 6d), sugarcane prefers to be > 90 (10*ºC). Sugar cane also favors 
BIO4 (Temperature Seasonality (standard deviation *100)) <7000.  
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Figure 3. Partial dependence plots of the top five important variables obtained by Random Forest (created 
in R 3.1.0). The following panels show the relationships (a) with BIO11 (Mean Temperature of Coldest 
Quarter), (b) BIO7 (Temperature Annual Range (BIO5-BIO6)), (c) BIO6 (Min Temperature of Coldest 
Month), (d) BIO9 (Mean Temperature of Driest Quarter), (e) influence of BIO4 (Temperature Seasonality 
(standard deviation *100)).  
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Spatial analysis of potential effects of climate change 
 

The threshold of 0.75 to define the presence-absence distribution was obtained by the 
sensitivity-specificity equality approach by (Liu et al., 2005). We then transformed four 
continuous distribution maps (Current, RCP 2.6, RPC 4.5, RCP 8.5) to binary presence-
absence maps (see Appendix 3 for all details). The results indicated that when solely 
judged by climate change envelopes, the suitable distribution of sugarcanes would 
enlarge (Figure 4 and Table 2). Depending on RCPs of 2.6, 4.5 and 8.5 scenarios,  
the climate-suitable planting areas was projected to increase between 44.2% and 
104.6% to 2070 (Table 2).  
 

 
 

Figure 4. Projected change of sugarcanes climate-suitable plating areas based on a consensus forecast 
(BCM) from three GCMs by 2070 under (a) RCP 2.6, (b) RCP 4.5, (c) RCP 8.5. The projected current 
sugarcanes climate-suitable planting areas were overlaid with future projections to identify areas that 
would be lost, gained, or remain.  
 

Furthermore, Table 2 and Figure 3 show that some of the original suitable planting 
areas would be lost. This makes for app. 2.5% to 3.7% of the current distribution areas, 
depending on RCP scenario (Table 2). It mainly would happen in the Hainan Province 
(see Figure 4). Meanwhile, most parts of the currently suitable areas would still remain. 
Our model also offered the information that the junction of Sichuan and Chongqing 
would gradually become a suitable place and the north boundary of suitable areas would 
shift to further north (Figure 4).  
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Table 2. Projected change in the total area of sugarcanes suitable distribution areas based on consensus 
forecast from three GCMs by 2070. Areas are given in (km2), with the percent of the current total given in 
parentheses.  
 

Area 
 
Scenario 

Area Lost (%) Area Remain (%) Area Gain (%) New total habitat (%) 

Current - - - 345,580 

RCP 2.6 9,910 (2.9) 335,670 (97.1) 172,860 (47.1) 498,620 (144.2) 

RCP 4.5 8,510 (2.5) 337,070 (97.5) 247,580 (69.1) 576,150 (166.7) 

RCP 8.5 12,700 (3.7) 332,890 (96.3) 387,090 (108.3) 707,280 (204.6) 

 
Discussion  
 
Spatial variations of sugarcane areas with climate change 
 

Our model based on Random Forest offered a great accuracy (AUC=0.97, TSS=0.96) 
allowing for robust inference. Our model results indicated that the suitable planting 
areas for sugarcanes in the current distribution would increase by app. 44.2%, 66.6%, 
104.6% (under RCP 2.6, RCP 4.5 and RCP 8.5, respectively) during the 21st century 
(Table 2 and Figure 4). However, some currently suitable habitats will experience a 
reduction, which is manly distributed in the Hainan Province. And most parts of the 
current sugarcane distribution areas would still remain (>96.3%) under each scenario. 
So strictly judged from the aspect of climate-suitable areas enlarging, China would 
benefit from climate change for sugarcane planting. We cannot speculate about other 
factors, yet, but likely more synergies are to occur as well.  

According to our model predictions (Figure 4), Guangxi (excluding the northeast 
parts), Yunnan (the south parts) and all of the Guangdong Province would be the major 
suitable planting areas. The junction of Sichuan and Chongqing would be an additional 
suitable area. The climate boundary for cultivating sugarcane would shift northwards. 
The reasons for suitable areas enlarging and the boundary shifting north may be due to 
climate warming, which makes more regions in the north satisfy the climate demand 
especially for temperature conditions of sugarcane’s life history. Based on our obtained 
results, we argue that the adjustment of the country’s industrial structure plan, 
developing central-south of Guangxi, southwest of Yunnan, west of Guangdong and 
north of Hainan into three major sugarcane-planting areas (Fu, 2013) would contribute 
to the production of sugarcane in China and its economic development. 
 
Environmental variables 
 

From the variable ranking and importance value for sugarcane (Table 1 and 
Appendix 2), we found that the top six important variables for sugarcane growth were 
all temperature-relevant (BIO11, BIO7, BIO6, BIO9, BIO4, BIO1). Then from the 7th 
to 11th place (BIO12, BIO16, BIO18, BIO19, BIO13) were precipitation-relevant 
variables. Therefore and in the absence of other predictors than the 19 Worldclim 
ones, we inferred for now that temperature condition is more important than 
precipitation for sugarcane growth at the present time in China. Also, the temperature 
of the coldest month and quarter were more important than for the warmest ones. We 
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think that’s because the environment need to satisfy the lowest temperature demand 
for growth (live) and for high temperature influence, plants could presumably regulate 
it through transpiration. Our results are consistent with (Su et al., 2006), who found 
sugarcane could not tolerate low temperature. We also found the precipitation of 
wettest quarter and month (BIO16 and BIO13) contributed more than the driest 
quarter and month (BIO17 and BIO14). That’s probably because the driest quarter and 
month is in winter with low temperature, sugarcane don’t grow much during this 
period (Zhang, 2013) While the wettest quarter and month are in summer with high 
temperature, sugarcane grows fast then with the required amount of water. Su et al. 
(2006) noted that little precipitation in Spring and Autumn would influence the 
production of sugarcane a lot.  
 
Species distribution models with climate variables projection versus traditional climate 
regionalization  
 

In the recent 15 years, Chinese researchers tried to apply small grid climate analysis 
methods in GIS to divide land into different suitable classes. This method was based on 
the relationship of the sugarcane growth and climate conditions (see Tu et al., 2003;  
Su et al., 2006). The advantage of this method is that it appears to be simple and it’s 
easy to handle and within experts’ physiology and ecology knowledge. Our projection 
of the crops’ distribution with species distribution models uses a similar concept, but 
obtains physiology and ecology knowledge from the real cultivating locations using 
latest statistics methods (supervised classification, machine learning algorithms, 
bagging). It is based on the ecological niche and allows for interactions and synergies. 
Furthermore, the model approach we employed here doesn’t take all variables as same 
weight. Instead it can calculate the individual contributions of variables to species 
distribution to achieve a best-possible outcome. And also, it could offer partial 
dependence plots of each predictor variable, which could display the relationship 
between the species distribution and individual predictors. These plots could help to 
increase people’s physiology and ecology knowledge of species, not just from 
experience but from powerful statistics which is known to ‘outsmart’ experts (Elith et 
al., 2006, Drew et al., 2011). Finally, our method follows Open Access principles and 
thus allows for a repeatable and transparent science, to be tested in a quantitative 
fashion explicit in space and time (Drew and Perera, 2011). We would like to encourage 
investigators to use our data and output, assess it and push it forward. Our work offers 
itself easily for testing and improvements and once better and additional data come 
online. We hope our work triggers the creation and release of new data relevant for 
sugarcane and global food security. Therefore, our model method presents an advanced 
and more rigorous version of traditional climate regionalization based on small grids 
based on best available science. 
 
Climate suitable areas versus real planting areas 
 

Our model predicted the climate suitable distribution of sugar cane for the current as 
well as for 2070. We found the suitable planting areas in the future under three 
scenarios were larger than current estimates. Our findings do not mean necessarily that 
China would grow sugarcane in more areas and in new climate suitable places; namely, 
suitable areas don’t automatically equal planting areas e.g. due to soil and other real-
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world constraints. It depends on multiple factors whether farmers would plant sugarcane 
in a certain place, such as soil condition, sugarcane varieties improvement, water and 
fertilizer management, other crops planting, economic benefits, industrial structure, 
national policy (e.g. Returning Farmland to Forest Policy, subsidies), etc. However, 
overall and solely judged by the growing area, China will benefit from sugarcane’s 
suitable planting area increase and will presumably have more choices to decide how to 
grow and obtain more sugar products. We have not addressed here other impacts of this 
prediction result and we suggest more studies about those synergies. 
 
Limitations and future work 
 

One probable shortcoming of our model is that we could not use all of the underlying 
surface conditions, such as soil status, nutrition availability etc. Another limitation is 
that we did not consider the irrigation situation, which could make unsuitable dry land 
to satisfy the demand of sugarcane growing. That’s because here we started this 
investigation using species distribution models and for now, just considered the effects 
of climate change on crop distribution. For future work, we could try to predict the 
actual production in the suitable areas and integrate water and fertilizer management, 
economic development into a complicated sustainable development system. We believe 
considering an added tele coupling perspective would help. 
 
Conclusion 
 

Our sugarcane distribution model with the Random Forest algorithm had rather high 
AUC (0.97) and TSS (0.96) values indicating excellent performance. Our model results 
showed that climate change would generally extend sugarcane’s suitable planting areas 
in China in the 21st century under all of the three conservative emission scenarios (RCPs 
of 2.6, 4.5 and 8.5). This includes a loss of few areas in the Hainan Province. Using 
WorldClim predictors, we found that the distribution of sugarcane largely depended on 
temperature predictors rather than precipitation as such. Based strictly on three future 
climate projections, our results indicated that China may benefit from climate change on 
sugar-production. 
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