Effects of climate change and cultivar on summer maize phenology

Document Type: Research Paper


1 College of Agronomy and Biotechnology, China Agricultural University Key Laboratory of Farming System, Ministry of Agriculture, China and, Beijing, 100193, China.

2 Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, China.

3 College of Agronomy, Agricultural University of Hebei /Hebei Key Laboratory of Crop Growth Regulation, Baoding, 071001, China

4 College of Agronomy, Agricultural University of Hebei /Hebei Key Laboratory of Crop Growth Regulation, Baoding, 071001, China.


To identify countermeasures to the effects of climate warming on crop production, we must
understand the changes in crop phenology and the relationships between phenology and climate
change and cultivar. We used summer maize phenological and climate data in the North China
Plain, collected from 1981 to 2010. This study analyzed the spatiotemporal trends in
phenological data and lengths of different growing phases, mean temperatures and rainfall.
The analyses showed that sowing, jointing and anthesis occurred relatively early at 13 (48.1%),
11 (40.7%) and 13 (48.1%) stations, respectively. Maturity dates were delayed significantly at
10 (37.0%) stations. The lengths of the vegetative growing phases, vegetative and reproductive
growing phase at most stations showed a negative trend. The lengths of the reproductive
growing phase increased at 25 (92.6%) stations, respectively. Furthermore, at most stations, the
correlations between T
means and lengths of the various growing phases were negative, whereas
the correlations between rainfall and lengths of various growing phases were positive.
Furthermore, a field experiment, including four summer maize cultivars which were introduced
during the 1950s, 1970s, 1990s and 2000s, was carried out during 2012 to 2014. The analyses
showed that the durations of the various growing phases increased significantly. These results
indicated that climate warming accelerates summer maize growth and shortens the growing
periods of maize growth, whereas cultivars shift might prolong the maize growing season.
Therefore, the maize cultivars with more longer whole growing period should be adopt in the
North China Plain under the trend of global warming and the adaptation strategy of maize
production under climate change should include crop phenology in response to climate change.
The findings presented here could guide the development of options to adapt maize production
to climate change in the North China Plain and other areas with similar ecologies.