Maize response to water, salinity and nitrogen levels: physiological growth parameters and gas exchange

Document Type: Research Paper


Irrigation Department, Shiraz University, Shiraz, I.R of Iran.


A split-split-plot design with three replications in two years of 2009 and 2010

was conducted to investigate the effect of different levels of irrigation water (main

plot), salinity of irrigation water (sub-plot) and nitrogen fertilizer rate (sub-subplot)

on maize growth rate and gas exchange. Irrigation treatments were I1 (1.0

crop evapotranspiration (ETc)+0.25ETc as leaching), I2 (0.75I1) and I3 (0.5I1)

applied at 7-day intervals. The salinity treatments of irrigation were 0.6 (fresh

water), 2.0 and 4.0 dS m-1. There were also three nitrogen (N) treatments including

0, 150 and 300 kg N ha-1. Results showed that vegetative growth stage of maize in

salinity stress lasted 5% more than that in water stress. The most sensitive trait

under water, salinity and nitrogen stress was grain yield (GY). The optimum

treatment for maize production is full fresh water application by 150 kg N ha-1.

Results also showed that crop growth rate (CGR) was statistically higher in I1 and

I2 as 58 and 34% relative to I3 treatment, respectively. Furthermore, CGR was

statistically lower in S2 and S3 as 10 and 18% relative to S1, respectively. Besides,

N application significantly increased CGR by an average of 15% as compared with

no N rate. The net assimilation rate (NAR) reached its maximum value in I2, S2 and

N2 relative to other treatments indicating that NAR did not necessarily occurred at

maximum LAI conditions. In general, maize had statistically greater NAR in

pollination and filling stages relative to other growth stages. Results of gas

exchange for maize as a sensitive crop to water deficit, showed that photosynthesis

rate (An) and stomatal conductance (gs) were statistically decreased in water deficit

by an average of 30 and 43% as compared to full irrigation treatment, respectively.

However, reduction in An and gs in salinity conditions was the same as 13%

compared to no salinity treatment. Transpiration rate (T) was statistically lower

under water and salinity stress by an average of 75 and 26% as compared to no

water and salinity stress, respectively. The ratio of An/gs in I2 and I3 was statistically higher as 23% than that obtained in I1 treatment indicating that

maximum amount of intrinsic water use efficiency could be achieved by water

saving strategies. This result confirmed by transpiration efficiency (An/T) which

was statistically higher as 40 and 14% in I3 and S3 relative to full and fresh water

irrigation treatment, respectively. In general, there was a decreasing trend in An

and gs toward the end of growing season, mainly due to leaves ageing. Similar

pattern also occurred in measurements during a day from morning to afternoon.

Furthermore, An and gs decreased as vapor pressure deficit (VPD) increased. The

relationships between An and gs vs VPD in different growth stages implied that the

plant ability to regulate An and gs in response to VPD at leaf level declined in the

last growth stages. This indicated that the water saving strategies during last

growth stage for maize is more desirable.

Keywords: Gas exchange; Growth analysis; Maize; Water; Salinity and nitrogen stress.