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Abstract 
 

Genotype × environment (G×E) interaction complicates the identification of 
superior genotypes. An understanding its causes is needed for a more effective 
breeding strategy. The objective of this study was to determine the plant traits that 
cause genotype × location (G×L) interaction for pod yield in peanut using a modeling 
approach. The CSM-CROPGRO-Peanut model was used to simulate pod yield for  
17 peanut genotypes for 14 locations representative of all peanut production areas in 
Thailand using 30 years of historical weather data. Sensitivity analysis was used to 
determine the effects of individual and combinations of plant traits on pod yield and 
yield response to environments by varying the value of one or more cultivar 
coefficients and then evaluating their effects. The results showed that the cultivar 
coefficients that showed major effects were the duration from first seed to 
physiological maturity (SDPM), maximum leaf photosynthesis rate (LFMAX), the 
maximum fraction of daily growth that is partitioned to seed and shell (XFRT), 
single seed filling duration (SFDUR) and the duration of pod addition (PODUR). 
Those having minor effects were the duration from emergence to first flower 
(EMFL), maximum leaf size (SIZLF) and maximum seed weight (WTPSD). The 
cultivar coefficients that caused the differences in both mean yield and yield response 
to locations between peanut genotypes in different pairs included LFMAX, XFRT, 
SDPM, SFDUR and PODUR, but the causal characters differed among pairs of 
genotypes. It was concluded that changing the degree of genotypic response to 
environments is possible through selection for a combination of some of these traits, 
and that model simulation could be used to identify those traits. 
 
Keywords: G×E interaction; Cultivar adaptation; Yield stability; Crop model; 
Sensitivity analysis. 
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Introduction 
 

Yield is generally the primary goal for the selection of superior 
genotypes in a plant breeding program. Crop yield has a high genotype × 
environment (G×E) interaction because it is an outcome of a complex 
integration of many growth and development processes. This makes the 
identification of superior genotypes difficult as the ranking for yield 
performance of the test genotypes may change for different environments 
(Allard and Bradshaw, 1964; Fehr, 1987; Kang, 1990; Cooper and Hammer, 
1996; Kang, 2002). In general, G×E interaction is considered an obstacle to 
crop improvement (Kang, 1990). However, it could be considered as a 
reflection of the differences in genotypic adaptation, which might be 
exploited by selection and/or by adjustment of the testing strategy (Basford 
et al., 1996). A better understanding of the nature of the G×E interaction is 
needed to be able to use it effectively through appropriate breeding 
methodologies (Basford and Cooper, 1988). Knowledge of the physiological 
basis for the differential responses of genotypes to specific environments 
should improve the efficiency with which a breeder can characterize 
material for its G and G×E interaction and, hence, increase the speed at 
which superior genotypes can be identified (Wright et al., 1996). 
Information on plant traits that cause the G×E interaction for crop yield 
should lead to a more effective selection for improved genotypic adaptation 
to the target environment. 

Several studies have been conducted to elucidate the causes of G×E 
interaction for crop yield based on analyzing yield trial data with various 
statistical methods, e.g., incorporating several covariates into a mixed model 
(Frensham et al., 1998), partial least squares regression (PLSR) (Vargas et al., 
1998), factor regression analysis (Signor et al., 2001), site regression  
model (SREG) (Yan and Hunt, 2001) and the additive main effects  
and multiplicative interaction model (AMMI) (Motzo et al., 2001). These 
statistical models generally partition crop yield into the “statistical” 
components relating to genotype (G), environment (E) and G×E interaction. 
While these statistical models have yielded useful information, they can not 
elucidate the direct effect of each plant trait or each combination of traits on 
the G×E interaction for crop yield. 

Separating yield into its components, such as number and weight of 
kernels or biomass and harvest index is one approach that can help with the 
interpretation of G×E interaction (Cooper et al., 1996). However, these 
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components are still the end product of a crop and they individually can not 
explain the processes that contribute to yield. Simple physiological models 
have also been used for analyzing multi-environment trial (MET) data. For 
example, Williams (1992) used the parameters of crop growth rate, 
partitioning and phenology for interpretation of yield data from METs of 
peanut genotypes. Wright et al. (1996) modeled yield as a function of amount 
of water transpired (T), transpiration efficiency (TE) and harvest index (HI). 
Its analog form in which yield was expressed as a function of intercepted 
radiation (Ri), radiation use efficiency (RUE) and HI has also been used 
(Bidinger et al., 1996). Although these approaches have contributed to a 
better understanding of the physiological basis of the G×E interaction, they 
too did not provide information on the effects of individual plant traits or each 
combination of traits on the G×E interaction for final crop yield. 

Crop simulation models are one set of tools that have been used  
to answer complex questions related to crop production, economics and 
environmental impact (Tsuji et al., 1998; Hoogenboom, 2000; Jones et al., 
2003). These models have also been used to study different aspects of G×E 
interaction (White and Hoogenboom, 1996; White and Hoogenboom, 2003; 
Chapman et al., 2002; Chapman et al., 2003; Messina et al., 2006; 
Phakamas et al., 2008; Phakamas et al., 2010). As these models can simulate 
yield of cultivars for different environments and agronomic practices (White 
et al., 1995; Boote et al., 1998; Chapman et al., 2002), they provide an 
opportunity to be used as a tool to help understand the direct effect of each 
plant trait or a combination of traits on the G×E interaction for crop yield.  

The Cropping System Model (CSM)-CROPGRO-Peanut is a process-
oriented model that is part of the Decision Support System for 
Agrotechnology Transfer (DSSAT) (Boote et al., 1998; Jones et al., 2003; 
Hoogenboom et al., 2004a). The model has been evaluated extensively in 
Thailand, particularly for assisting with multi-environment evaluation of 
peanut breeding lines (Banterng et al., 2006; Suriharn et al., 2008; Anothai 
et al., 2009), for determining the mega-environment for peanut breeding 
(Putto et al., 2008), for studying the dynamics of G×E interaction 
(Phakamas et al., 2008) and for designing a peanut ideotype for a target 
environment (Suriharn et al., 2011). Its design is a modular structure in 
which the model components separate along scientific discipline lines and 
are structured to allow replacement or addition of modules (Jones et al., 
2003). A crop template is a module for crop processes that is defined and 
constructed based on the common processes of different crops. Species and 
cultivar input files in the crop template module contain information for 
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growth and development of individual species and genotypes. These files 
allow a user to modify values of parameters of the individual species and 
genotypes. By modifying the values of the cultivar coefficients in these 
files, many crop genotypes can be simulated with the same program source 
code under the main model. This feature of the model can be used as a tool 
in studying G×E interaction, particularly in determining the causal plant 
traits. The genotype × location (G×L) interaction is of special interest as it is 
the part of G×E interaction which is repeatable and is related to local 
adaptation of crop genotypes (Annicchiarico, 2002). Lately, there has been 
increasing interest to breed crop cultivars for specific areas to take 
advantage of local adaptation. Information on traits that affect G×L 
interaction would be useful to this breeding strategy. The objective of this 
study was to determine the plant traits that cause the G×L interaction for 
yield in peanut using the CSM-CROPGRO-Peanut model. 
 
Materials and Methods 
 

The approach used in this study consisted of (1) determining the yield 
performance and yield response to locations of the individual peanut 
genotypes as well as patterns of G×L interaction among peanut genotypes, 
(2) sensitivity analysis of cultivar coefficients for mean performance and 
yield response to locations utilizing the CSM-CROPGRO-Peanut model and 
(3) conducting sensitivity analyses for selected pairs of genotypes with 
different patterns of G×L interaction to determine the causal plant traits. 
 
Determination of yield response to location and patterns of G×L interaction 
 

This study is based on simulated pod yields for 17 peanut lines from 112 
locations and three growing seasons, i.e., early-rainy, mid-rainy and dry 
seasons and 30 years similar to the studies conducted by Phakamas et al. 
(2008) and Putto et al. (2008). The procedures for generating this data set 
has been described in detail in these two papers (Phakamas et al., 2008; 
Putto et al., 2008) and are briefly presented here.  

The 112 locations cover all peanut production areas in Thailand. They 
were identified by selecting districts with a considerable peanut acreage 
based on the crop production statistic of the Department of Agricultural 
Extension for the 2002-2003 cropping-year. A total of 43 districts in 24 
provinces were identified. Questionnaires were sent to the district extension 
agents requesting information on the main peanut production villages in 
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their districts, the growing seasons and the range of planting dates in each 
season, the local soil characteristics and the irrigation practices. Once  
the production villages were identified, the soil types for the individual 
villages were determined from the soil map of the Department of Land 
Development. Twenty four weather stations that were located in or adjacent 
to the individual growing areas were also identified. The basic units for 
model simulation, designated as locations, were then determined by 
overlaying the area of influence of each weather station as determined by 
Thiessen polygons onto the soil series map, resulting in unique 112 
locations. The 17 peanut lines used were breeding lines and released 
cultivars selected to provide diversity in yield level, seed size, plant type 
and maturity duration (Table 1). 
 
Table 1. Peanut breeding lines and cultivars used in this study and sources of their 
respective cultivar coefficients. 
 

Line 
No. Line/cultivar Seed type Maturity 

duration 
Source of cultivar 

coefficients 
1 KK 5 Small-seeded Early Suriharn et al. (2007) 
2 (Chico×GA 119-20) 8-3-12 Small-seeded Early Sujariya (2004) 
3 KKU 1 Small-seeded Medium Suriharn et al. (2007) 

4 (KK 60-3×(MGS9×Chico) 
-12-16-1)26-5-33 Small-seeded Medium Banterng et al. (2004) 

5 (KK60-3 × (Ah 65 × NC 
Ac 17090))-3-11-7 Small-seeded Medium Banterng et al. (2004) 

6 (KK 4 × NC8C)-33-6-21 Small-seeded Early Banterng et al. (2004) 

7 A progeny of Tainan 9 
× Moket Small-seeded Medium Banterng et al. (2004) 

8 (Luhua 11×KK60-3) F6-22 Large-seeded Early Suriharn et al. (2007) 

9 (Luhua 11 × China 97-2) 
F6-11-3 Large-seeded Early Suriharn et al. (2007) 

10 ((Nc Ac 17090 × B1)-25 
× Luhua 11) F5-14-2 Large-seeded Medium Suriharn et al. (2007) 

11 (China 97-2 × Singburi) 
F6-13-1 Large-seeded Medium Suriharn et al. (2007) 

12 ((Nc Ac 17090 × B1)-25 
× KK60-3) F6-2-2 Large-seeded Medium Suriharn et al. (2007) 

13 ((Nc Ac 17090 × B1)-25 
× China 97-2) F5-11-2 Large-seeded Late Suriharn et al. (2007) 

14 KKU 72-1 Large-seeded Late Suriharn et al. (2007) 
15 KK 60-3 Large-seeded Late Suriharn et al. (2007) 

16 (China 97-2×KK 60-3) 
F6-9-1 Large-seeded Late Anothai et al. (2008) 

17 KKFC 4008-5 Large-seeded Late Anothai et al. (2008) 
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The CSM-CROPGRO-Peanut Model was used to simulate pod yield of 
the 17 peanut genotypes for the 112 locations. For each location, peanut 
yield was simulated for three growing seasons, i.e., early-rainy, mid-rainy 
and dry seasons and 30 years. The inputs required for model simulation 
included local weather and soil data, crop management practices and 
cultivar coefficients (Tsuji et al., 1994). The required soil characteristics of 
each soil type that included bulk density, percentage of sand, silt and clay, 
initial soil moisture, organic matter, pH, nitrate (NO3

-) and (NH4
+) 

concentrations and exchangeable P and K were obtained from the database 
of the Department of Land Development. Thirty years of historical data for 
daily maximum and minimum temperatures (oC) and daily rainfall (mm) 
from 1972 to 2002 for the 24 weather stations were obtained from the 
Department of Meteorology. Daily solar radiation (MJ m-2 d-1) was 
estimated based on the relationship between daily maximum and minimum 
temperature and solar radiation (Jintrawet et al., 2002). Crop management 
data for row spacing and plant population followed the standard procedure 
of the peanut yield trials, while the planting dates for each location were 
obtained from the questionnaires. The cultivar coefficients of the 17 peanut 
lines (Table 2) were obtained from previous studies of Banterng et al. 
(2004), Sujariya (2004), Suriharn et al. (2007) and Anothai et al. (2008). 
These cultivar coefficients have been validated with independent data in the 
respective studies and were found to generate simulated phenology, growth 
and yield of the peanut lines that agreed well with the corresponding 
observed values. For the model simulation, rainfed conditions were used for 
the early-rainy and the mid-rainy seasons and full irrigation was used for the 
dry season, utilizing the automatic planting feature of the model. 

In the present study, the locations used were a sub-set of the 112 
locations in order to be convenient for sensitivity analyses. They were 
derived by grouping the 112 locations based on their similarity in G×L 
interaction and then selecting a representative location from each group. 
Location grouping was performed with cluster analysis (Collaku et al., 
2002) using the SAS Proc CLUSTER and TREE (SAS Institute, 1996). 
Ward’s minimum variance method (Ward, 1963) was used in performing 
hierarchical cluster analysis, which was truncated at 14 groups for which 
over 99% of the total G×L interaction could be accounted for by the G×L-
group interaction. A representative location was selected from each group to 
constitute a reduced set of 14 locations that was used for further analysis in 
this study. As in all groups, there were several locations that had a mean 
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yield that was close to the mean of their respective group. Therefore, 
selection of the representative locations was done in such a way that each 
selected location had a mean close to the mean of its group and that the  
14 representative locations also had different soil types and were distributed 
in different geographical regions. The resulting 14 locations and their 
descriptions are listed in Table 3. Location, as used in this paper, includes 
not just the soil traits, but also the long-term climatology of a location to 
include temperature, rainfall and solar radiation effects. 

The response of the peanut genotypes to different locations was 
determined with a conventional linear regression model (Eberhart and 
Russell, 1966): 
 

Yij = μi + βiIj + δij   
 
Where; 
 

Yij = mean yield of the ith genotype at the jth location, 
 

μi = mean yield of the ith genotype over all locations,  
 

βi = regression coefficient that measures the response of the ith genotype to 
varying performance of the test locations, 
 

Ij = environmental index of the jth location expressed as a mean over all 
genotypes at the jth location reduced by a grand mean, 
 

δij = deviation from regression of the ith genotype at the jth location. 
 

In general, multivariate techniques are thought to be more effective in 
explaining G×E interactions than linear regression models (Lin et al., 1986; 
Zobel et al., 1988; Nachit et al., 1992) and other methods for analyzing 
MET data are more popular, especially, the Additive Main Effects and 
Multiplicative Interaction (AMMI) and the genotype main effects and 
genotype × environment interaction biplot (GGE biplot) (Gauch, 2006; Yan 
et al., 2007). However, in the present study, the linear regression model  
was selected because it gives the responses of the test genotypes to locations 
and thus allows for the identification of patterns of G×L interaction which 
are needed for sensitivity analysis to determine the causal traits. 
Furthermore, our preliminary analysis showed that the relationships between 
the means of the individual genotypes at different sites with site mean yields 
were essentially linear. 
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The means for simulated pod yield of the 17 peanut lines over three 
seasons and 30 years were calculated for each of the 14 locations and for all 
locations (genotype mean yield), as well as the means over all genotypes, 
seasons and years for the individual locations (location mean yield). The 
genotype mean yields were used to indicate the mean performance of  
the individual genotypes. The yield response to locations of each peanut 
genotype was determined by regressing mean yield of the genotype for  
the individual locations against the location mean yield. The regression 
coefficient (b) value was used as an index to indicate the response of a 
genotype to different locations. Pairs of genotypes with different patterns of 
G×L interaction were identified by comparing the means and the b values of 
the individual genotypes. A pair of genotypes with the same b value will 
indicate no G×L interaction, while those with different b values will show 
G×L interaction. Genotypes with different b values will have the cross-over 
G×L interaction if their means are more or less the same, but will show the 
non-crossover G×L interaction if their means are significantly different. 
 
Sensitivity analysis of cultivar coefficients for mean performance and yield 
response to locations 
 

The CSM-CROPGRO-Peanut model requires 15 cultivar coefficients that 
define the growth and development characteristics or traits of a peanut 
cultivar (Table 4). Seven coefficients define the life cycle development 
characteristics and eight coefficients define the growth characteristics 
(Boote et al., 2003). In this study, only 13 candidate coefficients were 
evaluated for the effect of changing their values. These included five 
phenological development traits, three vegetative growth traits and five 
reproductive growth traits. The phenological development traits were the 
number of photothermal days from emergence to flowering (EMFL), from 
first flower to first pod (FLSH), from first flower to first seed (FLSD), from 
first flower to end of leaf expansion (FLLF) and from first seed to 
physiological maturity (SDPM). The three vegetative growth traits consisted 
of the maximum leaf photosynthetic rate (LFMAX), specific leaf area 
(SLAVR) and the maximum size of a full leaf (SIZELF). The five 
reproductive growth traits included the maximum fraction of daily growth 
that is portioned to seed and shell (XFRT), individual seed size (WTPSD), 
seed filling duration for an individual pod cohort (SFDUR), average seed 
per pod (SDPDV) and the photothermal time required for a cultivar to reach 
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final pod load (PODUR). Because peanut is insensitive to day length, the 
values of the remaining two coefficients, the critical short day length and the 
photoperiod sensitivity, were set to 11.84 h and 0.00, respectively (and 
coefficients are not listed in Table 4). 
 
Table 4. Cultivar coefficients of the CSM-CROPGRO-Peanut model and the range of values 
and increment interval in varying the specific parameter during the sensitivity analysis. 
 

Range Abbreviation Definition Unit† Minimum Maximum 
Increment 
interval 

Phenology parameters 

EMFL 
Time between plant 
emergence and flower 
appearance (R1) 

PD 17.0 24.0 0.70 

FLSH Time between first flower 
and first pod (R3) 

PD 7.0 14.5 0.75 

FLSD Time between first flower 
and first seed (R5) 

PD 16.6 28.5 1.20 

SDPM 
Time between first seed 
(R5) and physiological 
maturity (R7) 

PD 42.0 70.0 2.80 

FLLF 
Time between first  
flower (R1) and end of 
leaf expansion 

PD 50.0 88.0 3.80 

Growth parameters 

LFMAX 
Maximum leaf 
photosynthesis rate at 30 oC, 
350 vpm CO2 and high light 

mg CO2 
m-2 s-1 0.82 1.64 0.08 

SLAVR 
Specific leaf area of 
cultivar under standard 
growth conditions 

cm2 g-1 230 290 6.00 

SIZLF Maximum size of full leaf 
(four leaflets) cm2 15.0 67.5 5.25 

XFRT 
Maximum fraction of daily 
growth that is partitioned 
to seed and shell 

fraction 0.72 0.96 0.024 

WTPSD Maximum weight per seed g 0.36 1.15 0.08 

SDPDV 
Average seed per pod 
under standard growing 
conditions 

no. pod-1 1.31 2.50 0.12 

SFDUR 
Seed filling duration for 
pod cohort at standard 
growth conditions 

PD 24.0 40.5 0.17 

PODUR 
Time required for cultivar 
to reach final pod load 
under optimal conditions 

PD 13.0 31.0 1.80 

† PD=photothermal day. 
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Sensitivity analysis was conducted to evaluate the effect of changing the 
value of each cultivar coefficient on mean yield and yield response to 
locations (b-value) of a peanut genotype. Entries 6, 10 and 16, representing 
the early maturing, medium maturing and late maturing peanut lines, 
respectively, were chosen to provide the initial values for the cultivar 
coefficients. For each entry, sensitivity analysis was performed by varying 
the value of a cultivar coefficient within the range of its ecotype or cultivar 
limits, creating a series of 11 synthetic genotypes that differed only in the 
value of the varying coefficient. The range of values and increment interval 
for each cultivar coefficient are given in Table 4. The range of values of 
cultivar coefficient for each trait was limited to 10% beyond the combined 
range of values published for that particular trait in the default file of 
DSSAT version 4.5 (Hoogenboom et al., 2010), in Banterng et al. (2004) 
and in Suriharn et al. (2007). Such a limit was based on the logic that the 
values of cultivar coefficients in these three sources were from a limited 
number of peanut lines and that values of 10% beyond these ranges should 
be available in the peanut germplasm. Simulated yield for 14 locations, 
three seasons and 30 years were obtained for each synthetic genotype and its 
mean yield and b-value were calculated. The derived mean and b-value for 
the individual synthetic genotypes were compared to determine the effects 
of varying that particular cultivar coefficient on mean yield and b-value. 
The process was repeated for all cultivar coefficients in three types of 
peanut genotype backgrounds. 
 
Determination of plant traits causing G×L interaction 
 

Six pairs of peanut genotypes showing the three patterns of G×L 
interaction, i.e., no interaction, crossover and non-crossover interactions, were 
selected for sensitivity analysis to determine the casual traits, two pairs  
for each pattern. Sensitivity analysis was performed for each pair  
by sequentially replacing the values of each cultivar coefficient and 
combinations of coefficients of the lower-yielding genotype with the values 
of the corresponding coefficients of the higher-yielding genotype. Pod yield 
of the synthetic genotypes with the modified cultivar coefficients was 
simulated for 14 locations, 3 seasons and 30 years and the mean yield and 
yield response to locations (b-values) was determined. The change in cultivar 
coefficients continued until the regression line of the synthetic genotype was 
more or less the same as that of the higher-yielding genotype. The minimum 
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cultivar coefficients that made the regression lines of the synthetic and high-
yielding genotypes move closest together were considered the causal traits for 
G×L interaction for this pair of genotypes, particularly considering the 
singular trait shift that caused the most shift to agreement. The process was 
repeated for all selected pairs of genotypes. 
 
Results 
 
Response to location and patterns of G×L interaction  
 

The 17 peanut genotypes used in the present study varied considerably in 
both phenological development and growth traits as shown by their ranges 
of values given in Table 2. The mean simulated pod yield for these peanut 
genotypes averaged over 14 locations, three seasons and 30 years also 
differed substantially, ranging from 1.63 to 3.32 t ha-1 (Table 5). 
 
Table 5. Mean simulated pod yield and regression coefficient (b-value) against site mean 
yield for the individual peanut genotypes. 
 

Entry 
No. Line/cultivars Mean yield† 

(t ha-1) b-value† 

17 KKFC 4008-5 3.32 a 1.25 a 
13 ((Nc Ac 17090 × B1)-25 × China 97-2) F5-11-2 3.26 b 1.13 fg 
11 (China 97-2 × Singburi) F6-13-1 3.22 c 1.15 ef 
14 KKU 72-1 3.20 c 1.23 a 
9 (Luhua 11 × China 97-2) F6-11-3 2.97 d 0.91 j 

12 ((Nc Ac 17090 × B1)-25 × KK60-3) F6-2-2 2.93 e 1.17 b 
15 KK 60-3 2.92 e 1.16 cd 
8 (Luhua 11 × KK60-3) F6-22 2.89 f 1.07 g 

16 (China 97-2 × KK 60-3) F6-9-1 2.87 g 1.16 bc 
10 ((Nc Ac 17090 × B1)-25 × Luhua 11) F5-14-2 2.68 h 1.06 gh 
3 KKU 1 2.37 i 0.98 i 
1 KK 5 2.28 j 0.89 j 
5 (KK60-3 × (Ah 65 × NC Ac 17090))-3-11-7 2.14 k 0.93 j 
4 (KK 60-3 × (MGS9 × Chico)-12-16-1)26-5-33 2.00 l 0.86 jk 
2 (Chico × GA 119-20) 8-3-12 1.86 m 0.68 l 
6 (KK 4 × NC8C)-33-6-21 1.64 n 0.69 l 
7 A progeny of Tainan 9 × Moket 1.63 n 0.69 l 

† Numbers in the same column followed by the same letter are not significantly different at 
P<0.05 by t-test. 
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The 14 locations used in the present study differed greatly in soil  
type, temperature, solar radiation and rainfall (Table 3). These locations were 
selected to represent the total environmental variation of the 112 peanut 
production locations across Thailand. The mean yield over all genotypes for 
the individual 14 locations also varied greatly, ranging from 1.20 to 3.56  
t ha-1. Differential cultivar responses to locations were found for the 
individual genotypes and all the responses were essentially linear. Examples 
are shown in Figure 1 for selected genotypes. The value of the regression 
coefficient (b) against site mean yield for the individual peanut genotypes 
varied from 0.69 to 1.25 (Table 5). A high correlation was observed between 
mean yield and b-value of the test genotypes (r=0.92, P<0.01), indicating the 
strong association between high yield and high b-value and vice versa. The 
combined analysis of variance for the full data set of 112 locations and for the 
reduced data set of 14 locations revealed that the reduced data set still 
maintained the same level of G×L interaction as the full data set (data not 
shown). Thus, the genotypic responses to locations obtained in the present 
study should reflect the G×L interaction prevailing over all peanut production 
areas in Thailand that can be accounted for by the CSM-CROPGRO Peanut 
model. Visual inspection of Figure 1 revealed all three patterns of G×L 
interaction, i.e., no-interaction, non-crossover and crossover interactions, 
among pairs of peanut genotypes. For all possible pairs of 17 genotypes in the 
present study, 28 pairs showed no G×L interaction, 93 pairs displayed non-
crossover G×L interaction and 15 pairs exhibited crossover G×L interaction. 
 

Site mean simulated pod yield (t ha-1)
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Figure 1. Response to location for simulated pod yield of selected peanut genotypes  
(see Table 1 for entry description). 
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Effect of changing the value of each cultivar coefficient 
 

Model sensitivity analysis was used to determine the effect of a given 
cultivar coefficient on mean yield and yield response to locations (b-value) 
of a peanut genotype by varying the value of each coefficient and evaluating 
the effect of this change. The ranges of the values that were used for the 
individual cultivar coefficients are given in Table 4. The results of model 
sensitivity analysis showed that increasing the duration of phenological 
development for the number of days from first seed to physiological 
maturity (SDPM) resulted in a significant increase in both mean yield and 
yield response to locations (b-value) (Figure 2d), while changing the 
number of days from emergence to flowering (EMFL) and from first 
flowering to first seed (FLSD) resulted in only a slight increase in both 
mean yield and b-value (Figures 2a and 2c). On the other hand, changing the 
number of days from first flowering to first pod (FLSH) and from first 
flowering to end of leaf expansion (FLLF) did not have an impact on either 
the mean or b-value (Figures 2b and 2e). The effects of varying each of 
these phenological genetic parameters on mean yield and b-value were the 
same for the early maturing, medium maturing and late maturing peanut 
lines (Figure 3), except that the changes in both mean yield and b-value 
were greater for the medium and late maturing lines than for the early 
maturing lines (Figures 3g and 3h). 

For the vegetative and reproductive growth traits, increasing the value of 
the maximum leaf photosynthesis rate (LFMAX), maximum fraction of daily 
growth that is partitioned to seed and shell (XFRT) and seed filling duration 
(SFDUR) resulted in considerable increases in both mean yield and b-value 
(Figures 2f, 2h and 2l, respectively). The responses to these parameters were 
the same for all three peanut maturity types (Figures 4a, 4b, 4g, 4h, 4m and 
4n), except that the responses to changing SFDUR for both mean yield and  
b-value were less for the early maturing than for the medium and the late 
maturing lines (Figures 4m and 4n). However, increasing the maximum size 
of full leaf (SIZLF) and the maximum weight per seed (WTPSD) resulted in 
only a slight response (Figures 2g and 2j), while increasing the value of 
specific leaf area (SLAVR) and number of seeds per pod (SDPDV) did not 
show a response (Figures 2i and 2l). Similar responses to these three 
parameters were also observed for all the three maturity types (Figures 4e and 
4f for SIZLF; 4i and 4j for WTPSD; 4c and 4d for SLAVR; and 4k and 4l for 
SDPDV). There was a negative response of mean yield to varying the 
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photothermal time required to reach final pod load (PODUR); increasing 
PODUR resulted in a significant decrease in mean yield (Figure 2m) and the 
responses were the same for all three maturity types (Figure 4o). However, 
differential responses to varying PODUR on the b-value were obtained 
among the three maturity types. Increasing PODUR gave an increase in  
b-value for both the medium and late maturing lines, although to a lesser 
extent for the medium maturing line, but increasing PODUR resulted in a 
significant decrease in the b-value for the early maturing line (Figure 4p). The 
above results indicated that, in many cases, the responses to individual 
cultivar coefficients were distinctly nonlinear, consistent with what was 
proposed by Boote et al. (2001) and Boote et al. (2003). 

Based on the responses described above, the cultivar coefficients could 
be divided into three groups. The first group consisted of traits that showed 
a major effect on mean yield and b-value. These included SDPM, LFMAX, 
XFRT, SFDUR and PODUR; the former four parameters had a positive 
effect but PODUR had a negative effect on mean yield, while its effect on b-
value could either be negative or positive depending on the maturity 
duration of the line. The second group consisted of the coefficients that had 
only a minor effect; these included EMFL, FLSD, SIZLF and WTPSD. The 
final group consisted of the coefficients that did not affect either the mean 
yield or b-value, i.e., FLSH, FLLF, SLAVR and SDPDV.  
 
Causal plant traits for different patterns of G×L interaction 
 

To determine the causal plant traits for G×L interaction, two pairs of 
genotypes were selected to represent each pattern of G×L interaction. The 
selected genotype-pairs were Entries 1 and 9 and Entries 3 and 8 for the no 
G×L interaction pattern (Figures 5a and 5g), Entries 7 and 14 and Entries 4 
and 16 for the non-crossover G×L interaction (Figures 6a and 6e) and 
Entries 9 and 16 and Entries 9 and 12 for the crossover G×L interaction 
(Figures 7a and 7f). Sensitivity analysis was used to determine the plant 
traits that caused the yield difference between the two genotypes for the 
individual pairs. This was done by sequentially replacing one or more of 
plant traits of the lower yielding line with the corresponding value of the 
high yielding line until the line of the modified genotype came close to the 
line of the high yielding genotype. The minimum traits that resulted in the 
lines of the two genotypes being close together were considered the causal 
traits for G×L interaction for that particular genotype-pair. 
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Results of the sensitivity analysis revealed that, for the no G×L interaction 
pattern, the traits that caused the line of the lower yielding line to get close 
to that of the higher yielding line were SFDUR, PODUR, XFRT, LFMAX 
and WTPSD for the pair of Entries 1 and 9 (Figure 5f) and SFDUR, SDPM 
and LFMAX for the pair of Entries 3 and 8 (Figure 5j). For both pairs, 
SFDUR was the trait that had the greatest effect in increasing the yield level 
of the lower yielding lines (Figures 5b and 5h). However, the trait being 
second in its effect was PODUR for the pair of Entries 1 and 9 (Figure 5c), 
but was SDPM for the pair of Entries 3 and 8 (Figures 5i). While five traits 
were needed to move the line of Entry 1 close to that of Entry 9 (Figure 5f), 
only three traits were sufficient to move the line of Entry 3 close to that of 
Entry 8 (Figure 5j). For the non-crossover G×L interaction pattern, the traits 
that caused yield difference both between Entry 7 and Entry 14 and between 
Entry 4 and Entry 16 were SDPM, LFMAX and XFRT (Figures 6d and 6h). 
For both pairs, SDPM had the greatest effect (Figures 6b and 6f) followed 
by LFMAX (Figures 6c and 6g). Likewise, for the crossover G×L interaction 
pattern, the traits that caused the lines of the two genotypes to come close 
together were PODUR, SDPM, XFRT and LFMAX for the pair of Entries  
9 and 16 (Figure 7d) and SDPM, PODUR and XFRT for the pair of Entries 
9 and 12 (Figure 7h). While PODUR had the greatest effect followed by 
SDPM for the pair of Entries 9 and 16 (Figures 7b and 7c), SDPM had the 
greatest effect followed by PODUR for the pair of Entries 9 and 12 (Figures 
7f and 7g). It appeared that the effect of an individual trait differed for 
different pairs of genotypes. 

The above results also indicated that the plant traits that caused yield 
difference between the two genotypes of the individual pairs were among 
those that showed a major effect on mean yield and b-value in the previous 
sensitivity analysis (Figures 3 and 4), i.e., SDPM, LFMAX, XFRT, SFDUR 
and PODUR. Examination of the values of these parameters for the two 
genotypes in each pair revealed that the traits that caused yield differences 
between the two genotypes were those in which the two genotypes differed. 
On the other hand, if the two genotypes did not differ significantly for any of 
these traits it would not show up as a causal trait for G×L interaction in that 
particular genotype-pair. For instance, SDPM did not cause a yield difference 
between Entries 1 and 9 because both entries had the same value of SDPM, 
i.e., 48.5 photothermal days (PD). On the other hand, this trait was a cause of 
G×L interaction for the pair of Entries 4 and 16 and the pair of Entries 9 and 
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12 because the two genotypes in each pair differed significantly in this trait, 
the values being 46.5 and 63.5 PD for Entries 4 and 16, respectively and 
being 48.5 and 56.5 PD for Entries 9 and 12, respectively (Table 2). This also 
explained why LFMAX was the cause of the G×L interaction for the pair of 
Entries 9 and 16 but not for the pair of Entries 9 and 12. 
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Figure 2. Effect of changing the value of each individual cultivar coefficient on mean yield 
and yield response to locations for Entry 10 (the medium maturing line). 
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Figure 3. Effects of changing the value of each individual phenological genetic parameter 
on mean yield and yield response to locations (b-value) for the early maturing (G6), the 
medium maturing (G10) and the late maturing (G16) peanut lines. 
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Figure 4. Effects of changing the value of each individual growth parameter on mean yield 
and yield response to location (b-value) for the early maturing (G6), the medium maturing 
(G10) and the late maturing (G16) peanut lines. 
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Figure 5. The no G×L interaction and the results after the specified cultivar coefficients 
of the low yielding line in each pair were adjusted to those of the corresponding high 
yielding line. 
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Figure 6. The non-crossover G×L interaction and the results after the specified cultivar 
coefficients of the low yielding line in each pair were adjusted to those of the corresponding 
high yielding line. 
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Figure 7. The crossover G×L interaction and the results after the specified cultivar 
coefficients of the low yielding line in each pair were adjusted to those of the corresponding 
high yielding line. 
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Discussion 
 

This study aimed to identify plant traits that cause the G×L interaction 
for pod yield of peanut by using sensitivity analysis with the CSM-
CROPGRO-Peanut model. The cultivar coefficients of the 17 genotypes 
used in the present study have already been validated with independent data 
in the respective studies from which they were taken (Banterng et al., 2004; 
Sujariya, 2004; Suriharn et al., 2007; Anothai et al., 2008) and the results 
showed good agreement between simulated and observed values of the 
corresponding traits. In additions, the cultivar coefficients of several peanut 
lines in the present study had also been shown to give good prediction  
of relative yield performances of the peanut lines in multi-environment  
trials (Banterng et al., 2006; Suriharn et al., 2008; Anothai et al., 2009). 
These studies have established that the CSM-CROPGRO-Peanut model is 
capable of predicting relative performances of the peanut lines across 
environments and that G×E interaction can be captured by model 
simulation. The latter was also shown in the present study in which all three 
patterns of G×L interaction, i.e., no interaction, non-crossover interaction 
and crossover interaction, were obtained.  

The results of the present study showed that LFMAX, XFRT, SDPM, 
SFDUR and PODUR were the causal traits for the differences in yield 
potential and for G×L interaction between peanut genotypes. These traits are 
related to the production of photosynthates (LFMAX), the partitioning of 
assimilates to pods (XFRT), the phenological duration of pod and seed 
development (SDPM), single seed growth duration (SFDUR) and the rate of 
pod duration (1/PODUR), respectively. Changing the values of the above 
traits will affect these processes and, consequently, affect crop yield. In 
addition, they have an interactive effect in determining the yield potential 
and yield response to locations for a given peanut genotype.  

Maximum leaf photosynthetic rate (LFMAX) is related to traits that 
maintain high photosynthesis, including high leaf N concentration and slow 
N mobilization (Boote et al., 2003). Increasing the value of this trait will 
result in an increase in crop growth rate (CGR), pod growth rate (PGR)  
and seed growth rate (SGR) and, as a result, an increase in biomass 
accumulation and ultimately final pod yield (Boote and Tollenaar, 1994). 

The XFRT is the genetic parameter that limits the fraction of daily growth 
that is partitioned to seed and shell. Increasing XFRT increases the total rate 
of seed and pod dry weight accumulation (allowing more pods to be carried), 
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but it restricts vegetative growth during the pod filling phase because peanut 
cultivars may have differential determinacy in growth habit. In peanut, 
vegetative and reproductive growth occurs simultaneously under optimum 
conditions; although this is cultivar-dependent (Duncan et al., 1978). There is 
a strong competition for assimilates between vegetative and reproductive 
organs. The plant must produce sufficient assimilates in order to be able to 
continue to grow its vegetative organs as well as to provide assimilates for 
seed development, although the crop may already have some maturing seeds. 
A higher XFRT would mean a greater proportion of photosynthate is 
allocated to reproductive structures, resulting in a reduction in vegetative 
growth and a higher pod yield (Duncan et al., 1978; Gupta, 1992). 

SDPM is the photothermal time between first seed to physiological 
maturity on a whole crop/plant basis (Boote et al., 1998). Increasing  
SDPM allows more time for biomass accumulation in seeds and pods and, 
consequently, an increase in pod yield. However, seed filling duration 
(SFDUR) is somewhat different, being the photothermal time required from 
the start to the end of seed filling for single pod cohorts (Boote et al., 1998). 
Increasing seed filling duration (SFDUR) will result in an increase in pod 
yield because the time of seed filling for a pod cohort is extended. On the 
other hand, increasing PODUR, which is the time required to reach final 
pod load, will result in a decrease in pod yield as the time required for rapid 
pod addition is increased and consequently a potentially lower number of 
pods are added (Boote et al., 1998). The reciprocal of PODUR can be 
thought of defining the pod addition rate in a normalized manner. 

The interactive effects of these parameters can be seen by examining the 
causal traits for yield difference and G×L interaction for the individual pairs 
of genotypes. For example, Entries 3 and 8 have more or less the same  
b-value but a different mean yield, with SFDUR, SDPM and LFMAX being 
the causes for their yield difference (Figure 5j). Entry 3 has lower values 
than Entry 8 for all the three traits (Table 2). Changing the values of 
SFDUR, SDPM and LFMAX of Entry 3 to be the same as those of Entry  
8 increased the yield for Entry 3 to the same level as that of Entry 8. As the 
two genotypes differed in all these three traits, to increase the yield level  
of Entry 3 to the level of Entry 8, thus, required a change in all three 
parameters simultaneously. 

For the pair of Entries 9 and 16 in which PODUR, SDPM, XFRT and 
LFMAX were identified as the causal traits (Figure 7d). Entry 9 had a slightly 
higher mean yield but a slightly lower b-value than Entry 16 (Figure 7a). 
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Entry 9 had a higher LFMAX but lower SDPM, XFRT and PODUR than 
Entry 16 (Table 2). To increase the yield level for Entry 16 while lowering its 
b-value so that they were the same as those of Entry 9, the values for LFMAX 
of Entry 16 had to be increased and at the same time the values for SDPM, 
XFRT and PODUR had to be decreased to the corresponding values of Entry 
9. Increasing LFMAX would increase the mean yield for Entry 16, which is 
desirable, but would also increase the b-value to be even higher, which did 
not cause the two lines to come together. Decreasing PODUR would increase 
the mean yield but decrease the b-value as Entry 16 is a late maturing line 
(Figures 4o and 4p). Decreasing SDPM and XFRT would bring about a 
decrease in both yield level and b-value of Entry 16. Decreasing SDPM, 
PODUR and XFRT would compensate for the increases of mean yield and  
b-value by increasing LFMAX. In this case, therefore, changing the causal 
traits in different directions is needed in order for Entry 16 to have the same 
yield level as well as the same adaptive response as Entry 9. It is noteworthy 
that PODUR was always among the causal traits found in the crossover 
pattern of G×L interaction. 

The finding that LFMAX, XFRT, SDPM, SFDUR and PODUR are the 
causal traits for yield differences and for G×L interaction between peanut 
genotypes is quite useful for the determination of breeding strategies  
for improving yield and achieving the desirable adaptive response to 
environments. Unfortunately, changing these traits will affect not only the 
yield level but also the b-value. This could be a potential conflict, although 
these simulations also confirm the general finding in the literature that a 
high yield level is associated with a high b-value. This illustrates why the 
selection for both higher yield potential and yield stability is difficult. The 
present study, however, has demonstrated that model sensitivity analysis can 
be used in determining what traits should be changed and in what direction, 
i.e., either an increase or a decrease, in order to achieve the desirable yield 
level and adaptive response of a given genotype. This is particularly useful 
for practical applications as the normal goal of a breeding program is to 
develop new cultivars that are superior to the best current cultivar. The 
information obtained from model sensitivity analysis could be used in 
selecting parents for crossing and in defining selection criteria.  

It should be pointed out that the CSM-CROPGRO-Peanut model is 
responsive to only certain abiotic factors that include air temperature, solar 
radiation, rainfall and irrigation and soil characteristics related to water 
availability in the profile and nitrogen in the soil. The model, however,  
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does not respond to biotic factors such as diseases, insects and weeds and  
other abiotic factors such as phosphorus, potassium, water logging and 
microvariability within the field (Boote et al., 1996; Hoogenboom et al., 
1999; Jone et al., 2003). The G×E interaction in the present study is thus 
limited to the interaction of genotypes with the environmental factors that 
the model can account for and the causal traits identified are the traits that 
affect only this portion of G×E interaction. However, it is the portion of 
G×E interaction that is of great concern to breeders because of its 
association with the adaptability of genotypes to the inherent and persistent 
natural environments of different production areas. In reality, those factors 
that the model does not account for are also the major causes of G×E 
interaction, particularly, biotic factors. This part of G×E interaction also has 
significant effects on yield performance and stability of crop genotypes, but 
it needs to be dealt with by a different approach. For example, G×E 
interaction resulting from differential responses of genotypes to different 
levels of disease pressure in different locations (indicating different degrees 
of disease resistance of the genotypes) can be dealt with by breeding for 
disease resistance. 

The results of the present study indicated that crop model sensitivity 
analysis can be a potential tool in assisting breeders to understand the 
relationship of plant traits and their interactions that contribute to a different 
yield potential and G×E interaction for a set of genotypes. It can also 
provide a potentially valuable tool for evaluation of the value of a given trait 
in a target environment that may aid breeders in the formulation of crop 
ideotypes and the evaluation of yield potential and yield stability of those 
ideotypes for target environments. This type of application of the crop 
simulation models is being used increasingly (Haverkort and Kooman, 
1997; White, 1998; Yin et al., 2003; Hoogenboom et al., 2004b). However, 
more research is still needed for this type of model application, particularly 
in identification of plant traits contributing to adaptation to a specific 
environment (specific adaptation) and in the validation of the results from 
model simulation by actual breeding work. 
 
Conclusions 
 

This study demonstrated that model sensitivity analysis can be used as a 
breeding tool to study the causes of G×E interaction. The plant traits that 
affect both the differences in yield between peanut genotypes and the G×L 
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interaction for pod yield are maximum leaf photosynthesis rate (LFMAX), 
the maximum fraction of daily growth that is partitioned to seed and shell 
(XFRT), the number of day from first seed to physiological maturity 
(SDPM), single seed filling duration (SFDUR) and the duration of pod 
addition (PODUR). The study also showed that model sensitivity analysis 
can be used to hypothesize yield improvement likelihoods of a given peanut 
genotype for a peanut production environment such as Thailand based on 
improving single or multiple combinations of plant traits. This approach 
also has potential for other crops and for other target environments. 
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